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31, s13,

and the NSI elements εαβ (α, β = e, µ, τ) as small expansion parameters of the same order

ǫ. Within the ǫ perturbation theory we obtain the S matrix elements and the neutrino

oscillation probability formula to second order (third order in νe related channels) in ǫ. The

formula allows us to estimate size of the contribution of any particular NSI element εαβ

to the oscillation probability in arbitrary channels, and gives a global bird-eye view of the

neutrino oscillation phenomena with NSI. Based on the second-order formula we discuss

how all the conventional lepton mixing as well as NSI parameters can be determined. Our

results shows that while θ13, δ, and the NSI elements in νe sector can in principle be

determined, complete measurement of the NSI parameters in the νµ − ντ sector is not

possible by the rate only analysis. The discussion for parameter determination and the

analysis based on the matter perturbation theory indicate that the parameter degeneracy
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degeneracy is found. Some general properties of neutrino oscillation with and without NSI

are also illuminated.
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1 Introduction

Neutrino masses and lepton flavor mixing [1] discovered by the atmospheric [2], the so-

lar [3], and the reactor neutrino [4] experiments constitute still the uniques evidence for

physics beyond the Standard Model. A possible next step would be a discovery of neutrino

interactions outside the standard electroweak theory. Based on expectation of new physics

at TeV scale such non-standard interactions (NSI) with matter possessed by neutrinos

are proposed and extensively discussed [5–10]. The experimental constraints on NSI are

summarized in [11]. See also [12].

Recognition of structure of neutrino masses and lepton flavor mixing, at least up to

now, relies on neutrino flavor transformation [1, 5, 13, 14], which we generically refer as

neutrino oscillation in this paper. Quite naturally, there have been numerous theoretical

analyses to understand the structure of the phenomena. In the context of long-baseline

neutrino experiments, an exact expression of the oscillation probability is derived under the

constant matter density approximation [15]. To understand physics of neutrino oscillation,

however, it is often more illuminating to have suitable approximation schemes. In the latter

category, various perturbative formulations of three-flavor neutrino oscillation have been

developed and proven to be quite useful in particular in the context of long-baseline accel-

erator and reactor experiments. They include one-mass scale dominance approximation in

vacuum [16], short-distance expansion in matter [17], matter perturbation theory [18, 19],

and perturbation theory with the small expansion parameters ∆m2
21/∆m2

31 and θ13 [20]

(that are taken as of order ǫ) which we call the ǫ perturbation theory in this paper. See, for

example, [21–24] for subsequent development of perturbation theory of neutrino oscillation.

When the effects of NSI are included, however, theoretical analysis of the system of

neutrino flavor transformation does not appears to achieve the same level of completeness

– 1 –
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as that only with standard interactions (SI). Perturbative formulas of the oscillation prob-

abilities with NSI have been derived under various assumptions [25–31]. Even some exact

formulas are known [31]. However, one cannot answer the questions such as: How large

is the effects of ǫµτ in the oscillation probability P (νe → νµ)? (See below for definition of

NSI elements ǫαβ.) How large is the effects of ǫee in the oscillation probability P (νe → νe)?

Which set of measurement is sufficient to determine all the NSI elements? References of

neutrino oscillation and the sensitivity analyses with NSI are too numerous to quote here

and may be found in bibliographies in the existing literatures, for example, in [30–32].

It is the purpose of this paper to fill the gap between understanding of neutrino oscil-

lations with and without NSI. We try to do it by formulating the similar ǫ perturbation

theory as in [20] but with including effects of NSI by assuming that NSI elements are of

order ∼ ǫ. We derive the perturbative formula of the oscillation probability similar to the

one in [20], which we call, respectively, the NSI and the SI second-order formulas in this

paper. The approximate formula will allow us to have a bird-eye view of the neutrino

oscillations with NSI, and will enable us to answer the above questions.

The other limitation that is present in some foregoing analyses, which we want to

overcome, is the assumption of single (or, a few) ǫαβ dominance. Upon identification

or getting hint for possible NSI interactions it will become possible to express εαβ in

propagation as a function of couplings involved in the higher dimensional operators. When

this situation comes it is likely that all (or at least most of) the NSI elements εαβ exist

in the Hamiltonian with comparable magnitudes. Therefore, the theoretical machinery we

prepare for the analysis must include all the NSI elements at the same time.1

More about necessity and usefulness of the S matrix and the NSI second-order formula

of all oscillation channels and with all NSI elements included; If we are to include the effects

of NSI in production and detection processes it is necessary to sum up all the oscillation

channels that can contribute. Hence, the formulas of all channels are necessary. In a

previous paper it was uncovered that the so called θ13−NSI confusion [26, 27] can be

resolved by a two-detector setting in neutrino factory experiments [31]. Keeping the terms

with the solar ∆m2
21 is shown to be crucial for resolving the confusion, and hence a full

second-order formula is useful. In fact, the NSI second-order formula is surprisingly simple

in its form, keeping the form of the original SI one with generalized variables, and the

structure is even more transparent than those with first-order approximation of NSI.

With the NSI second order formula, we are able to discuss, for the first time, a strategy

for simultaneous complete determination of the SI and NSI parameters. Through the course

of discussions we indicate that, as in the system without NSI, the parameter degeneracy [33–

35] exist in systems with NSI, but in a new form which involve both the SI and the NSI

parameters. See sections 7 and 8. Moreover, we will uncover a new type of degeneracy, the

one exchanging the generalized solar and atmospheric variables in section 7.7.

Finally, we should mention about what will not be achieved in this paper even within

the context of theoretical analysis. First of all, our perturbative formulation relies on the

particular assumption on relative magnitudes of SI and NSI parameters, and we cannot say

1The similar comments also apply to the procedure by which the current constraints on NSI is derived

(for example in [11]) where the constraints are derived under the assumption of presence of a particular

NSI element in each time, the point carefully mentioned by the authors themselves.

– 2 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
4

many for cases in which our assumptions are not valid. We discuss the effects of NSI while

neutrinos propagate in matter, and its effects in production and detection of neutrinos are

ignored. Therefore, this paper must be regarded as merely the first step toward complete

treatment of neutrino oscillation with NSI.

2 Physics summary

Because this paper has been developed into a long one, unfortunately, we think it conve-

nient for readers, in particular experimentalists, to summarize the physics outputs of the

perturbative treatment of neutrino oscillation with NSI. We highly recommend the readers

to read this section first.

2.1 New result in the standard three flavor mixing

Though this paper aims at uncovering structure of neutrino oscillation with NSI, we have

observed a new features of standard neutrino oscillation without NSI in section 5.3, the

property we call the “matter hesitation”. It states that in our perturbative framework the

matter effect comes in into the oscillation probability only at the second order in the small

expansion parameter ǫ in all the channels of neutrino oscillation.2 It is a highly nontrivial

feature because we treat the matter effect as of order unity. The “matter hesitation”

explains why it is so difficult to have a sufficiently large matter effect, e.g., to resolve

the mass hierarchy, in many long-baseline neutrino oscillation experiments. It also has

implications to neutrino oscillation with NSI as will be discussed in section 5.4.

2.2 Guide for experimentalists; importance of various NSI elements in each

channel

Experimentalists who want to hunt NSI in neutrino propagation may ask the following

questions:

• We want to uncover the effect of εeτ (or εeµ). What is the neutrino oscillation channel

do you recommend to use for this purpose?

• We plan to detect the effect of εµτ . Which set of measurement do we need to prepare?

• We seek a complete determination of all the SI and the NSI parameters. What would

be the global strategy to adopt?

With the oscillation probability formulas given in section 6 we will try to answer these

questions. Though we can offer only a partial answer to the last question above we can

certainly give the answer to the first two questions within the framework of perturbation

theory we use. In table 1 the relative importance of the effects of each element εαβ of

NSI are tabulated as order of a small parameter ǫ that they first appear in each oscillation

channel. We presume ǫ ∼ 10−2. Thus, our answer to the above questions based on the

assumption that only the terms up to second order in ǫ are relevant would be (in order):

2Though this property must be known in the community as the results of perturbative calculation, it

appears to us that it did not receive enough attention so far.

– 3 –
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• The neutrino oscillation channels in which only εeτ and εeµ come in and the other

elements do not are the νe related ones, νe → νe, νe → νµ, and νe → ντ . Obviously,

the latter two appearance channels would be more interesting experimentally. One

can in principle determine them simultaneously with θ13 and δ by rate only analysis.

• Do measurement at the νµ → νµ channel to determine εµτ . Adding νµ → ντ channel

does not help. Effects of the NSI element are relatively large because they are first or-

der in ǫ, but the spectrum information is crucial to utilize this feature and to separate

its effects from those of εµµ − εττ . If an extreme precision is required you might want

to supplement the measurement by the νµ and ντ appearance measurement above.

• We will show that, in fact, there is a difficulty in complete determination of all the

NSI and SI parameters by the rate only analysis. The trouble occurs in the νµ − ντ

sector. Even though we are allowed to assume perfect measurement of all the chan-

nels including the one with ντ beam (which, of course, would not be practical), one of

the three unknowns, εµµ−εττ and εµτ including its phase, cannot be determined if we

rely on the rate only analysis. See section 7 for more details. Clearly, the spectrum

information is the key to the potential of being able to determine all the SI and the

NSI parameters, which should be taken into account in considering future facilities

which search for NSI.

With regard to the second point above, some remarks are in order; Usually, disappearance

channels are disadvantageous in looking for a small effect such as θ13, because one has to

make the statistical error smaller than the effect one wants to detect. In this respect, the

NSI search in the νµ−ντ sector is promising because it is the first order effect in ǫ. In fact,

rather high sensitivities for determining εµτ and εµµ−εττ observed in atmospheric [36] and

future accelerator [37] neutrino analyses are benefited by this feature.

We must warn the readers that experimental observable will be affected by NSI effects

in production and detection of neutrinos. Therefore, our comments in this subsection

assumes that they are well under control and shown to be smaller than the NSI effects in

propagation by near detector measurement with an extreme precision. It should be also

emphasized that some of our comments rely on the second-order perturbative formula of

the oscillation probability.

2.3 Some interesting or peculiar features of neutrino oscillation with NSI

We list here some interesting features of neutrino oscillation with NSI which will be fully

discussed in the following sections in this paper. Some of them are either unexpected, or

might be showed up in previous analyses but without particular attention. A few points

in them requires further investigation for full understanding.

• One of the most significant feature in table. 1 is that εee appears only at third order

in ǫ in all oscillation channels. It will be shown in section 5.4 that this feature can

be explained as a consequence of the matter hesitation mentioned earlier.

• It is interesting to observe from table 1 that Wolfenstein’s matter effect coefficient

a in the oscillation probability, shows up in first (second) order in ǫ in system with

– 4 –
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Channel ǫee ǫeµ ǫeτ ǫµτ ǫµµ ǫττ a dep. (NSI) a dep. (SI)

P (νe → να): α = e, µ, τ ǫ3 ǫ2 ǫ2 ǫ3 ǫ3 ǫ3 ǫ2 ǫ2

P (να → νβ): α, β = µ, τ ǫ3 ǫ2 ǫ2 ǫ1 ǫ1(ǫ2) ǫ1(ǫ2) ǫ1 ǫ2

Table 1. Presented are the order in ǫ (∼ 10−2) at which each type of εαβ (α, β = e, µ, τ) and a

dependence (a is Wolfenstein’s matter effect coefficient [5]) starts to come in into the expression of

the oscillation probability in ǫ perturbation theory.3 The last column is for the a dependence in the

standard oscillation without NSI. The order of ǫ indicated in parentheses implies the one for the

maximal θ23 in which cancellation takes place in the leading order. See the text for the definition

of ǫ perturbation theory and for more details.

(without) NSI, which makes effects of matter density uncertainty larger in system

with NSI. It occurs in the νµ − ντ sector, and is easily understood as a consequence

of “tree level” transition by the NSI element.

• The results in the last column in table 1 indicates that sensitivity to εµµ − εττ will

depend upon if θ23 is maximal or not. This feature is clearly seen, e.g., in [37].

Analysis to resolve the θ23 octant degeneracy similar to the one proposed for cases

without NSI [38–42], would be required for correct estimation of the sensitivity to

NSI.

3 Introducing the effects of NSI in neutrino production, propagation and

detection processes

We consider NSI involving neutrinos of the type

LNSI
eff = −2

√
2 εfP

αβ GF (ναγµPLνβ) (fγµPf), (3.1)

where GF is the Fermi constant, and f stands for the index running over fermion species in

the earth, f = e, u, d, where P stands for a projection operator and is either PL ≡ 1
2(1−γ5)

or PR ≡ 1
2(1 + γ5). The current constraints on ε parameters are summarized in [11].

Upon introduction of the NSI as in (3.1) it affects neutrino production, detection as

well as propagation in matter [9, 25, 27, 28]. Therefore, we have to analyze the following

“grand transition amplitude” from a parent Π particles (which needs not to be pions) to

the particular detection particle N (which needs not be nucleons):4

T (EΠ, EN ) =
∑

α,β

∫

dEναD(EΠ, Eνα)S(να → νβ;Eνα)R(Eνβ, EN ) (3.2)

3To second order in ǫ the sensitivity to εµµ and εττ is through the form εµµ−εττ , and hence no sensitivity

to the individual ε’s. Generally, the diagonal ε’s appear in a form of difference in the oscillation probabilities

because an over-all phase is an unobservable.
4 One can talk about momentum reconstructed detected neutrinos instead of detected positrons, for

example, but the reconstruction process must involve the effects of NSI. The expression in (3.2) is just to

symbolically indicate this point.

– 5 –
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where the sum over α and β must be taken only if they are amenable to be produced by the

decay, or to undergo the reaction. Here, we have assumed the particular decay process to

produce neutrinos as Π → να +Xα with decay amplitude D(EΠ, Eνα) with the energies EΠ

and Eνα of parent and daughter particles, and the particular reaction νβ +PTG → Nβ +Yβ

with reaction amplitude R(Eνβ , EN ) which produce Nβ particle with energy EN . Here, Xα

and Yβ are meant to be some inclusive collections of particles and PTG denotes the target

particle. S(να → νβ) denotes the neutrino oscillation amplitude of the channel να → νβ.

The observable quantity is of course |T (EΠ, EN )|2.
We assume that the coupling constant εαβ possessed by NSI is small, ∼

(

MW

MNP

)2
where

MNP is a new physics scale, so that we can organize perturbative treatment of the effects

of NSI. εαβ can be as small as 10−2 (10−4) for MNP = 1(10) TeV, and is even smaller if

higher dimension operators (higher than six) are required. We assume that all the εαβ have

similar order of magnitudes and denote the small number collectively as ǫ. Under these

assumptions we expect that the decay and the detection functions, and the oscillation

probabilities can be expanded as

D(EΠ, Eνα) = D(0) + D(1)ǫ + D(2)ǫ2 + · · ·
S(να → νβ;Eνα) = S(0)(να → νβ) + S(1)(να → νβ)ǫ + S(2)(να → νβ)ǫ2 + · · ·

R(Eνα, EN ) = R(0) + R(1)ǫ + R(2)ǫ2 + · · · (3.3)

where we have suppressed the kinematical dependences in quantities in the right-hand-side

of (3.3). The first terms in (3.3) are the one without NSI. Now, because of the smallness

of ǫ ∼ 10−2 (or smaller) we take the attitude that keeping terms up to second order

in ǫ must be good enough to discuss the effects of NSI and eventually to estimate the

sensitivity to NSI.5

Unfortunately, even with the perturbative treatment this is a highly complicated sys-

tem to analyze its full structure. It is possible that the types of NSI that contribute to

production and detection processes are more numerous than the ones in the propagation

process [30]. If this occurs the effects of NSI into production and detection processes could

be qualitatively different from those in propagation. Therefore, the effects of NSI come

into the decay and the reaction amplitudes generally in a model-dependent fashion, so that

the flavor (α, β) dependence of NSI effects are also model-dependent. Also they do so in

an energy dependent way so that integration over neutrino energy in (3.2) is required for

the full analysis. For an explicit example of how NSI enter into the decay and the reaction

amplitudes as well as to the neutrino propagation in matter in concrete models, see for

example the “unitarity violation” approach developed in [43].

In this paper, therefore, we confine ourselves to analysis of the structure of neutrino

propagation with NSI, namely the terms with no effects of NSI in the decay and the reaction

amplitudes in (3.2). This is a particularly simple system (relatively speaking with the full

one) in the sense that no unitarity violation comes in because it deals with propagation of

three light neutrinos. Furthermore, it has no explicit model dependence once the effects

5As far as the appearance channels νe → νµ and νe → ντ are concerned the oscillation amplitudes start

from first order in ǫ, as we will see below. Therefore, only the first order corrections to D and R are relevant

for the observable to order ǫ2.

– 6 –
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of NSI is parametrized in the familiar way. See the Hamiltonian in (4.2). We should

emphasize that limitation of our scope to the problem of neutrino propagation, in fact,

allows us to dig out structure of neutrino oscillation with NSI in a transparent manner.

Therefore, we think it a meaningful first step.

Our analysis can become the whole story provided that extremely stringent bounds on

NSI effects in decay as well as detection reactions are placed by front detector measurement

in future experiments. Otherwise, it covers only a leading (zeroth) order terms in NSI effect

in decay and detection. When the first order corrections to them are taken into account

what is needed is to compute the oscillation amplitude up to first order in ǫ to obtain the

observable to order ǫ2. Hence, we present the results of S matrix elements in appendix A,

not only the expression of the oscillation probabilities, for future use.

4 General properties of neutrino oscillation with and without NSI

Now, we analyze the structure and the properties of neutrino propagation in matter with

NSI. We, however, sometimes go back to the system without NSI whenever it is illuminat-

ing. The results obtained in this section are exact, that is, they are valid without recourse

to perturbation theory we will formulate in the next section. To discuss effects of NSI on

neutrino propagation it is customary to introduce the ε parameters, which are defined as

εαβ ≡ ∑

f,P
nf

ne
εfP
αβ , where nf (ne) denotes the f -type fermion (electron) number density

along the neutrino trajectory in the earth. Then, the neutrino evolution equation can be

written in flavor basis as

i
d

dx
να = Hαβνβ (α, β = e, µ, τ). (4.1)

In the standard three-flavor neutrino scheme, Hamiltonian including NSI is given by

H =
1

2E











U







0 0 0

0 ∆m2
21 0

0 0 ∆m2
31






U † + a(x)







1 0 0

0 0 0

0 0 0







+ a(x)







εee |εeµ|eiφeµ |εeτ |eiφeτ

|εeµ|e−iφeµ εµµ |εµτ |eiφµτ

|εeτ |e−iφeτ |εµτ |e−iφµτ εττ

















(4.2)

where ∆m2
ji ≡ m2

j − m2
i , and a(x) ≡ 2

√
2GF Ne(x)E is the coefficient which is related to

the index of refraction of neutrinos in medium of electron number density Ne(x) [5], where

GF is the Fermi constant and E is the neutrino energy. The first two terms in (4.2) are

the Standard Model interactions, whereas the last term denotes the non-standard neutrino

interactions with matter. U denotes the flavor mixing matrix, the Maki-Nakagawa-Sakata

(MNS) matrix [1], in the lepton sector. In its standard form [44] it reads

U = U23U13U12 =







1 0 0

0 c23 s23

0 −s23 c23













c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13













c12 s12 0

−s12 c12 0

0 0 1






(4.3)

– 7 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
4

where δ stands for the leptonic Kobayashi-Maskawa (KM) phase, and cij and sij denote

cos θij and sin θij , respectively.

Most of the formulas in this and the next sections (sections 4 and 5) can be written in

forms valid for arbitrary matter density profiles if the adiabatic approximation holds. We,

however, present the ones derived under the constant matter density approximation because

it makes the equations simpler, in particular, the perturbative formulas for the oscillation

probabilities in section 6. Unlike the case of the MSW solar neutrino solutions [14] in which

the matter density variation is the key to the problem, the constant density approximation

to Ne(x) in long-baseline experiments should serve as a reasonable first approximation.

The S matrix describes possible flavor changes after traversing a distance L,

να(L) = Sαβνβ(0), (4.4)

and the oscillation probability is given by

P (νβ → να;L) = |Sαβ|2. (4.5)

If the neutrino evolution is governed by the Schrödinger equation (4.1), S matrix is given as

S = T exp

[

−i

∫ L

0
dxH(x)

]

(4.6)

where T symbol indicates the “time ordering” (in fact “space ordering” here). The right-

hand-side of (4.6) may be written as e−iHL for the case of constant matter density. For

notational convenience, we denote the S matrix elements as

S =







See Seµ Seτ

Sµe Sµµ Sµτ

Sτe Sτµ Sττ






. (4.7)

The primary purpose of this paper is to discuss the properties of neutrino oscillation

in the standard three flavor system with NSI. But, we recollect the properties of neutrino

oscillation without NSI whenever necessary, and treat both systems simultaneously or

go back and forth between them to make our discussion transparent. By this way the

properties of the neutrino oscillations can be better illuminated.

4.1 Relations between neutrino oscillation amplitudes without NSI

If NSI, the third term in (4.2), is absent the matter term (the second term in (4.2)) has a

symmetry; It is invariant under U23 rotation which act on νµ − ντ subspace. Due to this

symmetry the Hamiltonian can be conveniently written in the form

H = U23H̃U †
23, (4.8)

and hence the S matrix can be written as

S(L) = U23S̃(L)U †
23 (4.9)
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as noticed in [23] where S̃(L) = T exp
[

−i
∫ L

0 dxH̃(x)
]

. The point here is that H̃ and S̃(L)

do not contain θ23.
If we denote S̃(L) matrix elements in a form analogous to the one in (4.7) S matrix

can be written as




S̃ee c23S̃eµ+s23S̃eτ −s23S̃eµ+c23S̃eτ

c23S̃µe+s23S̃τe c2
23S̃µµ+s2

23S̃ττ +c23s23(S̃µτ +S̃τµ) c2
23S̃µτ −s2

23S̃τµ+c23s23(S̃ττ−S̃µµ)

−s23S̃µe+c23S̃τe c2
23S̃τµ−s2

23S̃µτ +c23s23(S̃ττ −S̃µµ) s2
23S̃µµ+c2

23S̃ττ −c23s23(S̃µτ +S̃τµ)



 .

(4.10)

It should be noticed that See = S̃ee is independent of θ23. Therefore, the S matrix elements

obey relationships [23]

Seτ = Seµ(c23 → −s23, s23 → c23),

Sττ = Sµµ(c23 → −s23, s23 → c23),

Sτµ = −Sµτ (c23 → −s23, s23 → c23). (4.11)

4.2 Relations between neutrino oscillation amplitudes with NSI

The secret behind the relations between Seµ and Seτ and the others in (4.11) is that H̃ is

independent of θ23, or in other words, the invariance of H̃ under the transformation c23 →
−s23, s23 → c23. When NSI is introduced there exists the following additional term in H̃:

H̃NSI = U †
23





εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ



 U23 ≡





ε̃ee ε̃eµ ε̃eτ

ε̃∗eµ ε̃µµ ε̃µτ

ε̃∗eτ ε̃∗µτ ε̃ττ





=





εee c23εeµ−s23εeτ s23εeµ+c23εeτ

c23ε
∗
eµ−s23ε

∗
eτ c2

23εµµ+s2
23εττ−c23s23(εµτ +ε∗µτ ) c2

23εµτ −s2
23ε

∗
µτ +c23s23(εµµ−εττ)

s23ε
∗
eµ+c23ε

∗
eτ c2

23ε
∗
µτ −s2

23εµτ +c23s23(εµµ−εττ) s2
23εµµ+c2

23εττ +c23s23(εµτ +ε∗µτ )





(4.12)

Because H̃NSI in (4.12) does depend on θ23, the S matrix relations as given in (4.11) do

not hold. However, if we consider the extended transformation

c23 →− s23, s23 →c23,

εeµ →εeτ , εeτ →− εeµ,

εµµ →εττ , εττ →εµµ,

εµτ →− ε∗µτ , ε∗µτ →− εµτ , (4.13)

it is easy to show that H̃NSI is invariant under the transformation (4.13). It means that the

S matrix relations (4.11) hold even with NSI provided that we extend the transformation

to the ones in (4.13). It not only implies the existence of useful relations between the S

matrix elements, but also serves as a powerful tool for consistency check of perturbative

computation. We will see in appendices. A and B that the computed results of the S ma-

trix elements, and hence the oscillation probabilities, do satisfy (4.11) with the extended

transformation (4.13).

As we will see in section 6.2, the invariance under the extended transformation (4.13)

entails a remarkable feature that the terms which depend on ε’s in the νµ−ντ sector in the

oscillation probabilities P (νµ → νµ), P (νµ → ντ ), and P (ντ → ντ ) are all equal up to sign.
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4.3 Phase reduction theorem

Now, we present a general theorem on reduction of number of CP violating phases in system

with NSI, which we call “phase reduction theorem” for short. By looking into the results

of perturbative computation [28] it was observed that when the solar ∆m2
21 is switched off

the oscillation probabilities with NSI depends on phases which come from NSI elements

and δ in a particular manner, e.g., |ε|ei(δ+φ). It was conjectured on physics ground that

the property must hold in the exact expressions of the oscillation probabilities [31]; With

vanishing ∆m2
21 the system becomes effectively two flavor and hence the observable CP

violating phase must be unique.

Here, we give a general proof of this property which is, in fact, very easy to do. We

first notice a simple relation which holds in the absence of ∆m2
21,

Ĥ ≡







eiδ 0 0

0 1 0

0 0 1






H







e−iδ 0 0

0 1 0

0 0 1






(4.14)

= ∆







s2
13 c13s13s23 c13s13c23

c13s13s23 c2
13s

2
23 c2

13c23s23

c13s13c23 c2
13c23s23 c2

13c
2
23






+

a

2E







1 + εee |εeµ|eiχ |εeτ |eiω

|εeµ|e−iχ εµµ |εµτ |eiφµτ

|εeτ |e−iω |εµτ |e−iφµτ εττ






,

where ∆ ≡ ∆m2

31

2E
, χ ≡ δ + φeµ, and ω ≡ δ + φeτ . Then, if we use a new basis ν̂α ≡

[diag(eiδ , 1, 1)]αβνβ, the evolution equation reads

i
d

dx







ν̂e

ν̂µ

ν̂τ






= Ĥ







ν̂e

ν̂µ

ν̂τ






. (4.15)

It is obvious from (4.15) that the system depends on only three phases χ = δ + φeµ,

ω = δ + φeτ and φµτ out of four. This particular combination of phases is, of course,

depends upon the specific parametrization of the MNS matrix. The phase factor attached

to the transformation matrix in (4.14) does not affect the oscillation probability because

it is an over-all phase.

The similar treatment with the same transformation as in (4.14) (diag.(1, 1, e−iδ))

can be used to prove that the phase reduction occurs if θ12 = 0 (θ23 = 0) even though

∆m2
21 6= 0.6 If θ13 = 0 it is obvious that there are no effect of δ.

This completes a general proof that number of CP violating phases is reduced by one

when the solar ∆m2
21 is switched off, or one of the mixing angles vanishes. We emphasize

that this property has implications to the real world; For example, the phenomenon of

phase reduction occurs at the magic baseline, aL
4E

= π, in the perturbative formula to be

obtained in section 6 even though ∆m2
21 6= 0.

6We thank Hiroshi Nunokawa for calling our attention to this feature.
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5 Perturbation theory of neutrino oscillation

5.1 ǫ perturbation theory

To formulate perturbation theory one has to specify the expansion parameters. We take

the following dimensionless parameters as small expansion parameters and assume that

they are of the same order:7

∆m2
21

∆m2
31

∼ s13 ∼ εαβ ∼ ǫ (α, β = e, µ, τ). (5.1)

Whereas, we treat a
∆m2

31

and
∆m2

31
L

2E
as of order unity. We collectively denote order of

magnitude of the expansion parameters as ǫ, and hence we call the perturbative framework

the ǫ perturbation theory. In the absence of NSI our formulas of oscillation probabilities,

of course, reduces to the Cervera et al. formula [20], which we call the SI second-order

formula in this paper. Correspondingly, we call our second-order probability formula the

“NSI second-order formula”. It appears that in the standard case this perturbative frame-

work accommodates the situation of relatively large θ13 within the Chooz bound [46], and

applicable to wide variety of experimental settings.

Another approach would be to just expand in terms of εαβ which is assumed to be small

without any correlation with other SI mixing parameters. If NSI elements are extremely

small, much smaller than the SI expansion parameters, such first-order formulas of NSI

would be sufficient. It would be the case of NSI search in the next generation experiments

as discussed e.g., in [30].

On the contrary, it often occurs in deriving constraints on various NSI parameters

that the bounds on the diagonal ε’s, εee, εµµ, and εττ , are sometimes milder than the ones

on the off-diagonal ε’s by an order of magnitude. If it is the case, we may need to keep

the higher order of the diagonal ε’s in ǫ-perturbation theory, to e.g. ǫ4, in probabilities to

analyze such situations. We try not to enter into this problem in our present treatment.

5.2 Formulating perturbative framework

We follow the standard perturbative formulation to calculate the S matrix and the neutrino

oscillation probabilities [18]. Yet, we present a simplified treatment which is suitable for

higher order calculations. For convenience, we start by treating the system without NSI

in this section. We use the tilde-basis ν̃ = U †
23ν with Hamiltonian H̃ defined in (4.8). The

tilde-Hamiltonian is decomposed as H̃ = H̃0 + H̃1, where

H̃0(x)=∆







rA(x) 0 0

0 0 0

0 0 1






(5.2)

H̃1=∆







s2
13 0 c13s13e

−iδ

0 0 0

c13s13e
iδ 0 −s2

13






+ ∆r∆







s2
12c

2
13 c12s12c13 −s2

12c13s13e
−iδ

c12s12c13 c2
12 −c12s12s13e

−iδ

−s2
12c13s13e

iδ −c12s12s13e
iδ s2

12s
2
13







(5.3)

7We do not take 1√
2
− s23 as an expansion parameter because a rather large range is currently allowed

and the situation will not be changed even with the next generation experiments [24].
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where ∆ ≡ ∆m2

31

2E
r∆ ≡ ∆m2

21

∆m2

31

, rA(x) ≡ a(x)
∆m2

31

. Though our treatment can be easily general-

ized to cases with matter density variation as far as the adiabatic approximation holds, we

present, for ease of presentation, the formulas with constant matter density approximation.

To calculate S̃(L) we define Ω(x) as

Ω(x) = eiH̃0xS̃(x). (5.4)

Ω(x) obeys the evolution equation

i
d

dx
Ω(x) = H1Ω(x) (5.5)

where

H1 ≡ eiH̃0xH̃1e
−iH̃0x (5.6)

Then, Ω(x) can be computed perturbatively as

Ω(x) = 1 + (−i)

∫ x

0
dx′H1(x

′) + (−i)2
∫ x

0
dx′H1(x

′)

∫ x′

0
dx′′H1(x

′′) + O(ǫ3). (5.7)

where the “space-ordered” form in (5.7) is essential because of the highly nontrivial spatial

dependence in H1. Collecting the formulas the S matrix can be written as

S(L) = U23e
−iH̃0LΩ(L)U †

23 (5.8)

Therefore, essentially we are left with perturbative computation of Ω(x) with use of (5.6)

to calculate the S matrix.8

5.3 Matter hesitation and unitarity

One of the usefulness of the ǫ perturbation theory is that it allows to prove the property

“matter hesitation”, which is a characteristic feature of neutrino oscillation in matter with-

out NSI in small θ13 regime. The matter hesitation refers to the property that the matter

effect dependent terms in the neutrino oscillation probabilities P (να → νβ) (α, β = e, µ, τ)

are absent to first order in ǫ. Namely, it hesitates to come in before computation goes to

second order in ǫ. Though its validity heavily relies on the particular perturbative frame-

work we work in this paper, it explains why it is so difficult to detect the matter effect in

many accelerator experiments.

In fact, it is easy to observe the property of matter hesitation; It directly follows from

the structure of the S matrix in (5.8) itself. We first note that in the tilde-basis H̃1 is free

from the matter effect and it exists only in H̃0. Therefore, the matter effect dependence

exists only in eµ and eτ (and their conjugate) elements in H1 in (5.6), and they are of

order ǫ. The same statement follows for Ω in (5.7). Then, the matter effect dependence

in S̃ ≡ e−iH̃0LΩ is only in eµ, eτ and ee elements at first order in ǫ. Notice that the final

8Since H̃1 in (5.3) contains order ǫ2 terms in addition to order ǫ terms the formal expression in (5.7)

includes terms higher than O(ǫ2) which are meant to be ignored. The same statement applies to the

computation to be carried out in section 6.
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rotation in 23 space to obtain the S matrix in (5.8) does not alter the property of the

S̃ matrix. Therefore, no matter effect dependence appears in the oscillation probabilities

to first order in ǫ in ee, eµ − eτ and in the µτ sector channels for different reasons: In

P (νµ → νµ) and P (νµ → ντ ) the matter effect is trivially absent to order ǫ because of no

dependence in the S matrix. In P (νe → νµ) and P (νe → ντ ) it comes in only at order ǫ2

because the S matrix elements are of order ǫ. In P (νe → νe) the matter effect is absent to

order ǫ because it is contained in a phase factor of the S matrix element. This completes

the derivation of the matter hesitation, the property that matter effects comes in into the

oscillation probability only at second order in ǫ.

We stress that the absence of the matter effect in the oscillation probability to first

order in ǫ is highly nontrivial, in particular in See. Since the matter effect coefficient

rA = a
∆m2

31

is zeroth order in ǫ it can affect the S matrix in all orders of ǫ. But, in fact,

absence of matter effect to first order in ǫ in P (νe → νe) can be understood by unitarity.

For the most nontrivial channel, the relevant unitarity relation is

1 − P (νe → νe) = P (νe → νµ) + P (νe → ντ ) (5.9)

Since P (νe → νµ) and P (νe → ντ ) are at least of order ǫ2 as will be shown in section 6 and

appendix B, the matter dependent term in P (νe → νe), which is involved in the left-hand-

side in (5.9), has to be second order, or higher, in ǫ. It should be noticed that this argument

is valid not only in systems with SI only but also in the one with NSI, the matter hesitation

property for P (νe → νe) in the presence of NSI. Also notice that the same argument does

not go through for 1 − P (νµ → νµ) because P (νµ → ντ ) can contain the terms lower than

ǫ2. If fact, there exists the first order term in ǫ in P (νµ → νµ) and P (νµ → ντ ) which are

proportional to the matter effect coefficient a.

5.4 Implication of matter hesitation to neutrino oscillation with NSI

There is a clear implication of the property of matter hesitation to the system with NSI;

The terms with the NSI element εee must appear in the oscillation probability only at

third-order in ǫ or higher. It is due to the special nature of εee that can be introduced as

a renormalization factor of the matter effect coefficient a, a → a(1 + εee). Since the terms

with a are already of order ǫ2, the terms with εee must be at least of order ǫ3.

The reader should be puzzled by the above statement. One may argue quite naturally

that there must exist a term with first order in εee in the survival probability P (νe → νe).

In fact, such a term does exist in the relevant S matrix element as one can see in (A.1):

See = e−irA∆L
{

1 − i(s2
12r∆ + εeerA)∆L

}

(5.10)

Resolution of the puzzle, therefore, is that the first order term of εee cannot appears in

the oscillation probability because it is purely imaginary, or a phase ignoring ǫ2 terms.

However, to confirm the cancellation of second order term we must go beyond the present

treatment by keeping the order ǫ2 terms in the S matrix. It will be done in the next section.

A more general question is whether the matter hesitation can be generalized into the

whole systems with NSI. We have already answered the question at the end of the previous

subsection. This feature is to be verified by explicit computation in section 6.
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6 NSI second-order probability formulas

Now, we present the expressions of the oscillation probabilities with NSI which is valid to

second order in ǫ. For ease of computation we use a slightly different basis which we call

the double-tilde basis with Hamiltonian

H = U23U13
˜̃HU †

13U
†
23 (6.1)

and the corresponding S matrix

S(L) = U23U13
˜̃S(L)U †

13U
†
23 (6.2)

where ˜̃S(L) = T exp
[

−i
∫ L

0 dx ˜̃H(x)
]

. The zeroth order and the perturbed part of the

reduced Hamiltonian ˜̃H are given by

˜̃H0 = ∆







rA 0 0

0 0 0

0 0 1






(6.3)

˜̃H1 = ∆











r∆







s2
12 c12s12 0

c12s12 c2
12 0

0 0 0






+ rA







−s2
13 0 c13s13e

−iδ

0 0 0

c13s13e
iδ 0 s2

13

















+∆rAU †
13







ε̃ee ε̃eµ ε̃eτ

ε̃∗eµ ε̃µµ ε̃µτ

ε̃∗eτ ε̃∗µτ ε̃ττ






U13 (6.4)

where ∆ ≡ ∆m2

31

2E
, r∆ ≡ ∆m2

21

∆m2

31

, rA ≡ a
∆m2

31

. To simplify the expressions of the S matrix

elements we use the NSI elements in the tilde basis, ε̃αβ = (U †
23)αγεγδ(U23)δβ , defined

in (4.12). Notice that ε̃’s are invariant under the extended transformation (4.13).

The perturbative computation of the S matrix elements can be done with the formulas

similar to the ones in the tilde basis in section 5.2. In this section we concentrate on the

structural analysis of the NSI second-order oscillation probabilities e.g., for analysis of

parameter determination. We collect all the resultant explicit expressions of S matrix

elements and the oscillation probabilities in appendix A and B, respectively. The results of

third-order calculation which are necessary to complete table 1 are presented in appendix C.

6.1 Electron neutrino sector

The most distinctive feature of the NSI second-order oscillation probabilities in the νe-

related sector is that they have very similar forms as the SI second-order formulas [20] but

with the generalized atmospheric and the solar variables:

Θ± ≡ s13
∆m2

31

a
+ (s23εeµ + c23εeτ )e

iδ = ±s13
δm2

31

a
+ |ε̃eτ |eiφ̂eτ

Ξ ≡
(

c12s12
∆m2

21

a
+ c23εeµ − s23εeτ

)

eiδ = c12s12
∆m2

21

a
eiδ + |ε̃eµ|eiφ̂eµ (6.5)
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and their antineutrino versions

Θ̄± ≡ −s13
∆m2

31

a
+ (s23ε

∗
eµ + c23ε

∗
eτ )e

−iδ = ∓s13
δm2

31

a
+ |ε̃eτ |e−iφ̂eτ ,

Ξ̄ ≡
(

−c12s12
∆m2

21

a
+ c23ε

∗
eµ − s23ε

∗
eτ

)

e−iδ = −c12s12
∆m2

21

a
e−iδ + |ε̃eµ|e−iφ̂eµ , (6.6)

where φ̂eα ≡ δ + φ̃eα (α = µ, τ). The particular dependence on NSI elements in (6.5)

and (6.6) has root in the form of the perturbed Hamiltonian (4.12) in the tilde-basis, from

which it can be understood that ε̃eµ and ε̃eτ play the role of the mixing angles which govern

1-2 and 1-3 transitions, respectively. At the second equality in the right-hand-side of these

equations we have introduced a new notation ∆m2
31 = ±δm2

31 where ± sign indicates the

sign of ∆m2
31, the mass hierarchy, and δm2

31 ≡ |∆m2
31| > 0. Note that a ≡ 2

√
2GF NeE > 0.

For convenient notation we parametrize these quantities as

Θ± = |Θ±|eiθ± , Ξ = |Ξ|eiξ .

Θ̄± = |Θ̄±|eiθ̄± , Ξ̄ = |Ξ̄|eiξ̄ . (6.7)

To represent the oscillation probability in a compact way we define

X± ≡
(

a

δm2
31 ∓ a

)2

sin2 δm2
31 ∓ a

4E
L,

Y± ≡
(

a

δm2
31 ∓ a

)

sin
aL

4E
sin

δm2
31 ∓ a

4E
L,

Z ≡ sin2 aL

4E
. (6.8)

For anti-neutrinos we have flipped sign of a, and hence

X̄± = X∓,

Ȳ± = Y∓. (6.9)

Z is obviously invariant under the sign change of a, Z̄ = Z.

With these notations and by defining ∆31 ≡ ∆m2

31
L

4E
for simplicity of expressions, the

oscillation probabilities P (νe → νe), P (νe → νµ) and P (νe → ντ ) (together with the

anti-neutrino counterparts of the latter two) can be written as

P (νe → νe) = 1 − 4X±|Θ±|2 − 4Z|Ξ|2 (6.10)

P (νe → νµ) = 4s2
23X±|Θ±|2 + 4c2

23Z|Ξ|2 + 8c23s23Y±|Ξ||Θ±| cos(ξ − θ± − |∆31|) (6.11)

P (νe → ντ ) = 4c2
23X±|Θ±|2 + 4s2

23Z|Ξ|2 − 8c23s23Y±|Ξ||Θ±| cos(ξ − θ± − |∆31|) (6.12)

P (νµ → νe) = T [P (νe → νµ)]

= 4s2
23X±|Θ±|2 + 4c2

23Z|Ξ|2 + 8c23s23Y±|Ξ||Θ±| cos(ξ − θ± + |∆31|) (6.13)

P (ν̄e → ν̄µ) = CP[P (νe → νµ)]

= 4s2
23X∓|Θ̄±|2 + 4c2

23Z|Ξ̄|2 + 8c23s23Y∓|Ξ̄||Θ̄±| cos(ξ̄ − θ̄± − |∆31|) (6.14)

P (ν̄e → ν̄τ ) = CP[P (νe → ντ )]

= 4c2
23X∓|Θ̄±|2 + 4s2

23Z|Ξ̄|2 − 8c23s23Y∓|Ξ̄||Θ̄±| cos(ξ̄ − θ̄± − |∆31|) (6.15)

P (ν̄µ → ν̄e) = T[P (ν̄e → ν̄µ)] = TCP[P (νe → νµ)]

= 4s2
23X∓|Θ̄±|2 + 4c2

23Z|Ξ̄|2 + 8c23s23Y∓|Ξ̄||Θ̄±| cos(ξ̄ − θ̄± + |∆31|) (6.16)
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The upper and the lower signs in the above equations are for the normal and the inverted

hierarchies, respectively. The expression of P (νe → νe) is so simple because of the unitarity,

P (νe → νe) = 1 − [P (νe → νµ) + P (νe → ντ )].

Notice that to second order in ǫ, the oscillation probabilities in the νe related sector

do not contain any NSI elements in the νµ − ντ sector, εµτ etc. It should not come as a

surprise because in the νµ and ντ appearance channel from νe the leading term of the S

matrix is already of order ǫ, and it can contain only the νe related NSI elements, εeµ and

εeτ . Therefore, to order ǫ2 there is no room for NSI elements in the νµ − ντ sector in the

appearance probabilities. We will see in the next subsection that this simple fact leads to

a great simplification of the oscillation probabilities in the νµ − ντ sector.

We note, in passing, that because of the relation Y± =
√

X±Z which is easily recognized

by (6.8) it is evident that the oscillation probabilities can be written in a form of absolute

square of addition of the atmospheric and the solar terms.9 For example, P (νe → νµ) takes

the form

P (νe → νµ) = 4

∣

∣

∣

∣

s23

√

X±|Θ±| + c23

√
Z|Ξ|exp [i (ξ − θ± − |∆31|)]

∣

∣

∣

∣

2

. (6.17)

At the magic baseline, aL
4π

= π, the second term vanishes because Z = 0, leaving a very

simple expression of the oscillation probability, P (νe → νµ) = 4s2
23X±|Θ±|2.

6.2 νµ − ντ sector

As in the νe-related sector there is a distinct characteristic feature of the oscillation proba-

bilities with NSI in the νµ−ντ sector. Namely, to second order in ǫ they can be decomposed

into the three pieces with different dependences on NSI elements, the vacuum term, the

ones with εαβ in the νe-related and the νµ − ντ sectors, respectively:

P (να → νβ; εeµ, εeτ , εµµ, εµτ , εττ ) = P (να → νβ; 2 flavor in vacuum)

+P (να → νβ; εeµ, εeτ )

+P (να → νβ; εµµ, εµτ , εττ ) (6.18)

where α and β denote one of µ and τ . The explicit expressions of these terms will be

displayed in appendix B.

The point is that the last term in (6.18) is universal, up to sign, among all the three

channels, P (νµ → νµ), P (νµ → ντ ), and P (ντ → ντ ). Though it may look mysterious, it is

in fact very simple to understand it. By unitarity it follows that

P (νµ → νµ) + P (νµ → ντ ) = 1 − P (νµ → νe),

P (ντ → ντ ) + P (ντ → νµ) = 1 − P (ντ → νe). (6.19)

We note that P (νµ → νe) and P (ντ → νe) do not contain εµµ, εττ , and εµτ to second order

in ǫ. Then, it follows from the first equation in (6.19) that P (νµ → ντ ; εµµ, εµτ , εττ ) =

−P (νµ → νµ; εµµ, εµτ , εττ ). Noticing that the terms related to ε’s in the νµ − ντ sector are

9We thank Stephen Parke for calling our attention to this point.
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T-invariant, the relations P (ντ → ντ ; εµµ, εµτ , εττ ) = −P (νµ → ντ ; εµµ, εµτ , εττ ) must also

hold. Therefore, the εαβ (α, β = µ, τ) dependent term in the three channels are all equal up

to sign. The equality P (νµ → νµ; εµµ, εµτ , εττ ) = P (ντ → ντ ; εµµ, εµτ , εττ ) also follows from

the relationship between S matrix elements due to the extended transformation (4.13).

7 Parameter determination in neutrino oscillation with NSI

Thanks to the NSI second-order probability formulas derived in the previous section, we

can now address the question of how simultaneous measurement of the SI and the NSI

parameters can be carried out. However, we must first warn the readers that our discussions

in this section are based solely on the NSI second-order formulas, and hence its validity

may be limited. Nonetheless, we believe that ignoring the ǫ3 effects is quite safe because

we anticipate ǫ ∼ 10−2 in our perturbative framework.

7.1 SI-NSI confusion

One of the most distinctive features of the oscillation probability formulas in section 6

is that the NSI parameters εeα (α = µ, τ) appears in the particular combination with

the SI parameters as in (6.5) and (6.6). What that means in the context of parameter

determination? It means that, in general, determination of SI mixing parameters, θ13 and

δ, has severe confusion with determination of NSI parameters εαβ , and vice versa. However,

it should be noticed that it does not mean something like “No Go” theorem. Namely, there

is a way to circumvent this problem. It is a complete determination of the SI and the NSI

parameters, the possibility we address later in this section.

Nonetheless, we should note the following: If such complete determination is somehow

not feasible experimentally, our result may be interpreted as an analytic proof of the

“NSI-SI confusion theorem”.10 It is a powerful statement because it not only reveals the

existence of confusion but also illuminates which SI parameters are confused with which

NSI parameters via which manner.

In fact, the characteristic feature in (6.5), namely, ε̃eµ only couples to the solar scale

oscillation and ε̃eτ the atmospheric one, would affect the resolution of the θ13-NSI and the

two-phase confusions. Coupling between the solar and the atmospheric degrees of freedom

bridged by a NSI element is the key to the resolution of the θ13-NSI confusion by the

two-detector method [31]. Therefore, the resolution mechanism might be affected by the

simultaneous presence of two ε’s, which “decouples” the solar and the atmospheric degrees

of freedom. This point deserves a careful investigation.

7.2 Strategy for parameter determination

To gain a hint of how we can proceed let us look at table. 1. We first note that it is not

possible to detect the effects of εee because it is of third order in all channels, and hence

we have to omit it from our subsequent discussions.11 It is also well known and is obvious

10We note that a different type of the confusion theorem was derived in [27] which involves θ13 and NSI

parameters in production and in propagation processes that obey a special relationship.
11If we take the setting with only εee as NSI, it can be regarded as uncertainty in the matter density and it

is known that neutrino factory has a great sensitivity to it [47, 48]. However, in our current setting the issue
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from the probability formulas in appendix B that εµµ and εττ come in through the form

εµµ − εττ and therefore only their difference is measurable.

Next, we observe that in νµ and ντ appearance channels from νe, only the νe related

NSI, εeµ and εeτ appear to second order in ǫ. Therefore, the obvious strategy is to use these

channels for complete determination of them simultaneously with θ13 and δ. Then, we may

be able to determine the rest of the NSI parameters in the νµ − ντ sector by disappearance

and appearance measurement in that sector.

The important point is therefore that one can explore the effects of εeµ and εeτ in νe

related channels while ignoring εµτ , εµµ, and εττ . It is a good news because the appearance

channels, assuming excellent detection capability of νµ and ντ , have great potential of

detecting the effects of NSI [31]. Once εeµ and εeτ are measured one can proceed to

determine the rest of the NSI elements εµτ , εµµ, and εττ using the oscillation probabilities

in the νµ − ντ sector.12

7.3 Complete measurement of the SI and the NSI parameters; θ13, δ, εeµ and

εeτ

Now, we start to formulate a recipe for complete determination of the SI and the NSI

parameters. Based on consideration in the previous subsection, we concentrate on P (νe →
νµ) and P (νe → ντ ) and their CP and T conjugates. By looking into the expressions of

oscillation probabilities in (6.11) and (6.12) (and other related ones which will be given

below) one notices that the observable quantities are of the forms

|Θ±|2, |Ξ|2, ξ − θ±, in neutrino sector, and

|Θ̄±|2, |Ξ̄|2, ξ̄ − θ̄±, in antineutrino sector. (7.1)

where the phase ξ, θ±, etc are defined in (6.7). There are altogether six quantities.

Suppose now that somehow we were able to determine all these quantities. We discuss

in the following subsections how it can be done. Here, we show how they determine the SI

and the NSI parameters, s13, δ, |ε̃eµ|, |ε̃eτ |, φeµ, and φeτ . It may be sufficient, assuming

that the inversion is possible, to express the observable in terms of the physical parameters.

We start with the neutrino sector:

|Θ±|2 = s2
13

(

δm2
31

a

)2

+ |ε̃eτ |2 ± 2s13|ε̃eτ |
(

δm2
31

a

)

cos φ̂eτ ,

|Ξ|2 =

(

c12s12
∆m2

21

a

)2

+ |ε̃eµ|2 + 2c12s12|ε̃eµ|
∆m2

21

a
cos(δ − φ̂eµ). (7.2)

of matter density uncertainty is much more severe and universal; It produces uncertainties in determining

all the NSI elements. Clearly, the discussion of this point is beyond the scope of the present paper.
12If θ23 is deviated significantly from the maximal so that cos 2θ23 ≫ ǫ, then the terms with εµµ − εττ

can have sizes of order ǫ. In this case, it may be possible to detect the effects of εµµ − εττ and measure (or

constrain) it even without having a priori knowledges of εeµ and εeτ .
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For phase difference we obtain

Θ∗
±Ξ

Θ±Ξ∗
= e2i(ξ−θ±) =

1

|Θ±|2|Ξ|2

×
[

s2
13

(

δm2
31

a

)2
{

(

c12s12
∆m2

21

a

)2

e2iδ + |ε̃eµ|2e2iφ̂eµ + 2c12s12|ε̃eµ|
∆m2

21

a
ei(δ+φ̂eµ)

}

+ |ε̃eτ |2
{

(

c12s12
∆m2

21

a

)2

e2i(δ−φ̂eτ )+|ε̃eµ|2e2i(φ̂eµ−φ̂eτ )+2c12s12|ε̃eµ|
∆m2

21

a
ei(δ+φ̂eµ−2φ̂eτ )

}

± 2s13|ε̃eτ |
(

δm2
31

a

)

{

(

c12s12
∆m2

21

a

)2

ei(2δ−φ̂eτ )

+|ε̃eµ|2ei(2φ̂eµ−φ̂eτ ) + 2c12s12|ε̃eµ|
∆m2

21

a
ei(δ+φ̂eµ−φ̂eτ )

}]

. (7.3)

By taking the real and the imaginary parts of (7.3) one can obtain cos 2(ξ − θ±) and

sin 2(ξ − θ±), respectively. For antineutrinos we obtain

|Θ̄±|2 = s2
13

(

δm2
31

a

)2

+ |ε̃eτ |2 ∓ 2s13|ε̃eτ |
(

δm2
31

a

)

cos φ̂eτ ,

|Ξ̄|2 =

(

c12s12
∆m2

21

a

)2

+ |ε̃eµ|2 − 2c12s12|ε̃eµ|
∆m2

21

a
cos(δ − φ̂eµ). (7.4)

Similarly, the equation for the phase difference θ̄± − ξ̄ similar to (7.3) can be obtained by

making the transformation a → −a, δ → −δ, φ̂eµ → −φ̂eµ, φ̂eτ → −φ̂eτ in (7.3).

Having the six equations altogether with given six observable, |Θ±|, |Θ̄±|, |Ξ|, |Ξ̄|,
ξ̄ − θ̄±, and ξ − θ±, they can be solved for the six unknowns, s13, δ, two complex numbers

ε̃eµ, and ε̃eτ . Given the latter two numbers one can determine the original εeµ and εeτ .

Therefore, the rest of the problem in simultaneous determination of the SI and the NSI

parameters is how to measure the above six observable.

7.4 Measurement with a monochromatic neutrino beam; νe sector

In this subsection, we discuss a way of determining the SI-NSI combined parameters in (7.1)

by assuming a set of measurement at an energy E, aiming at their complete determina-

tion.13 Though it might not be a practical way, by describing a concrete method we try to

illuminate characteristic features of the problem of complete determination. With the six

unknowns we have to prepare neutrino oscillation measurement of six different channels.

Suppose that one measures the following six probabilities at a neutrino energy E,

P (νe → νµ), P (νe → ντ ), P (νµ → νe) = T[P (νe → νµ)], P (ν̄e → ν̄µ) = CP[P (νe → νµ)],

P (ν̄e → ν̄τ ) = CP[P (νe → ντ )], P (ν̄µ → ν̄e) = T[P (ν̄e → ν̄µ)]. Notice that we have

intensionally avoided to use the channels which require ντ beam which, if not impossible,

13 It was proposed that such a monochromatic neutrino beam can be prepared for νe and ν̄e beams [49, 50].

– 19 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
4

would be very difficult to prepare. From (6.11), (6.12), and (6.13), it is easy to obtain

P (νe → νµ) + P (νµ → νe) = 8s2
23X±|Θ±|2 + 8c2

23Z|Ξ|2

+16c23s23Y±|Ξ||Θ±| cos(ξ − θ±) cos |∆31| (7.5)

P (νe → νµ) − P (νµ → νe) = 16c23s23Y±|Ξ||Θ±| sin(ξ − θ±) sin |∆31| (7.6)

P (νe → νµ) + P (νe → ντ ) = 4X±|Θ±|2 + 4Z|Ξ|2 (7.7)

Similarly, for the antineutrino channels, we obtain from (6.14), (6.15), and (6.16),

P (ν̄e → ν̄µ) + P (ν̄µ → ν̄e) = 8s2
23X∓|Θ̄±|2 + 8c2

23Z|Ξ̄|2

+16c23s23Y∓|Ξ̄||Θ̄±| cos(ξ̄ − θ̄±) cos |∆31| (7.8)

P (ν̄e → ν̄µ) − P (ν̄µ → ν̄e) = 16c23s23Y∓|Ξ̄||Θ̄±| sin(ξ̄ − θ̄±) sin |∆31| (7.9)

P (ν̄e → ν̄µ) + P (ν̄e → ν̄τ ) = 4X∓|Θ̄±|2 + 4Z|Ξ̄|2 (7.10)

It is easy to solve these equations to obtain |Θ±|, |Ξ|, and (ξ − θ±) (for neutrinos), and

|Θ̄±|, |Ξ̄|, and (ξ̄ − θ̄±) (for antineutrinos).

It may be obvious that the above analysis can be converted to the rate only analysis by

replacing the probabilities P (να → νβ) by energy integrated number of events with fluxes

and cross sections
∫

dEFασνNP (να → νβ), and the similar integrated quantities of X± etc.

7.5 Determining the NSI parameters in the νµ − ντ sector

After measurement of θ13, δ, and εeµ and εeτ as described in the previous subsection,

one can proceed to determination of the NSI parameters in the νµ − ντ sector with (for

concreteness) mono-energetic beam. As we saw in section 6.2 the εµµ and εµτ dependent

term in the oscillation probabilities is universal in P (νµ → νµ), P (νµ → ντ ), and P (ντ →
ντ ). Therefore, one can simply use one of the above three channels, which means that τ

neutrino beam, even if it were prepared, does not help.

The oscillation probability P (νµ → νµ) derived in section 6 can be written as

P (νµ → νµ; εeµ, εeτ , εµµ, εµτ , εττ ) = P (νµ → νµ; εeµ, εeτ ) (7.11)

+D(0)
± (εµµ − εττ ) + R(0)

± Re(εµτ ) + D(1)(εµµ − εττ ) + R(1)Re(εµτ )

+S(0)(εµµ − εττ )2 + W(0)(εµµ − εττ )Re(εµτ ) + Q(0)Re(εµτ )2 + I(0)Im(εµτ )2

where the explicit form of the coefficients can be easily read off from the expressions in ap-

pendix B and we have the similar expression for antineutrinos. We have obtained two equa-

tions for the three unknowns, εµµ − εττ , Re(εµτ ), and Im(εµτ ). Clearly we need one more

equation to determine the three unknowns, which is unavailable under the current setting.

Thus, we have to conclude that a complete determination of the NSI elements in the νµ−ντ

sector is not possible by measurement at a monochromatic beam or the rate only analysis.

7.6 Necessity of spectrum analysis

Doing measurement at six different channels is not the unique way of carrying out complete

determination of the six parameters. Even in the case where only the “golden channel”,
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P (νe → νµ) and P (ν̄e → ν̄µ), is available, one can in principle determine |Θ±|2, |Ξ|2, ξ−θ±,

and their antineutrino counterparts by spectrum analysis. It is because the energy and

baseline dependences of the coefficients of these quantities in the oscillation probabilities

in (6.11) and (6.14) are different with each other. In the νµ−ντ sector all the NSI elements

cannot be determined by the rate only analysis, and need for the spectrum information is

mandatory in this sector.

It appears that one of the most promising ways to carry this out is the two-detector

method [51]. It has been applied to the Tokai-to-Kamioka-Korea (T2KK) two-detector

complex which receives neutrino beam from J-PARC [42, 52, 53].14 In the context of

neutrino parameter determination in neutrino factory with NSI as well as SI, this method

was examined in detail in [31].15

7.7 Parameter degeneracy; old and new

7.7.1 NSI-enriched conventional type degeneracy

The parameter degeneracy is the problem of multiple solutions in determination of lep-

ton mixing parameters [33–35]. It is known to be a notorious problem for their precision

measurement. See [56, 57] for a global overview of the degeneracy, and [57, 58] for picto-

rial representation.

We give evidences that the phenomenon has an extension to the system with NSI.16 Our

discussion based on the matter perturbation theory in section 8 indicates that the parameter

degeneracy prevails in system with NSI but with new form which involve NSI parameters.

Set of equations for observable we have derived in sections 7.3 and 7.4 shows that the

sign-∆m2
31 and the θ23 octant degeneracies exist because the equations take different form

for different mass hierarchies and octant for a given set of observable. It is also very likely

that the intrinsic-type degeneracy survives with a NSI-enriched form, as one can see in the

bi-probability diagram [34] given in figure 2 of [31].

7.7.2 New type of degeneracy

Here, we present a completely new type of parameter degeneracy which may be called

as the “atmospheric-solar variable exchange” degeneracy. We work with the setting of

measurement of six channels at a monochromatic energy. First of all, one notices that

determination of the neutrino (un-barred) and the antineutrino (over-barred) variables

decouples with each other. We discuss only the neutrino variables below because the

antineutrino ones is so similar. To simplify the expressions we restrict ourselves to the

case of maximal θ23. By combining (7.5), (7.6), and (7.7) it is easy to show that the phase

14 Other possibility would be the one called the “on axis wide-band beam approach” which was proposed

in a concrete form in the project description for Brookhaven National Laboratory [54]. Precise estimation

of the potential in doing spectrum analysis, however, depends upon which kind of detector is chosen and

the actual performance of the detector.
15 See [55] for effects of the systematic errors and optimization of the similar two-detector setting in

parameter determination in neutrino factory.
16 Notice that introduction of NSI parameters leads to a new solution of the solar neutrino problem [59].
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variable can be determined as

tan(ξ − θ±) = cot |∆31|
Peµ − Pµe

Pµe − Peτ
. (7.12)

where we have used a simplified notation Pαβ ≡ P (να → νβ).

It is easy to show that if the mass hierarchy is known the solution of this equation is

unique in the physical region −π ≤ ξ ≤ π and −π ≤ θ± ≤ π. Then, the solutions for |Θ±|
and |Ξ| are given by

|Θ±|2 =
Peµ + Peτ

8X±



1 ±
√

1 − 1

sin2(ξ − θ±) sin2 ∆31

(

Peµ − Pµe

Peµ + Peτ

)2


 ,

|Ξ|2 =
Peµ + Peτ

8Z



1 ∓

√

1 − 1

sin2(ξ − θ±) sin2 ∆31

(

Peµ − Pµe

Peµ + Peτ

)2


 . (7.13)

Notice that the degeneracy is quite new; It is the solar-atmospheric variable exchange

degeneracy. That is, if there is a solution |Θ(1)
± | and |Ξ(1)|, then the second solution |Θ(2)

± | =
√

Z
X±

|Ξ(1)| and |Ξ(2)| =
√

X±
Z

|Θ(1)
± | exists. Notice that the new degeneracy does not survive

when NSI is switched off where ξ = δ and θ± = 0. Namely, there is no phase degree of

freedom in the atmospheric variable in the limit, while only phase degree of freedom exists

in the solar variable.

Now we turn to the sign-∆m2 degeneracy. At first sight there is no sign-∆m2 degener-

acy because the sign-∆m2 flipped solution of ξ−θ± has to satisfy the same equation (7.12)

which has no explicit dependence on the sign. Nevertheless, there is indeed a sign-∆m2

flipped solution. If ξ(1) and θ
(1)
+ are the solution to (7.12) then there are another solutions

ξ(2) = ξ(1)±π and θ
(2)
− = θ

(1)
+ ∓π. It means the existence of the sign-flipped solution of Θ and

Ξ, which can be another solutions if accompanied by (∆m2
31)

(2) = −(∆m2
31)

(1). With these

solutions of the phase equation there exist the similar degenerate solutions as in (7.13).

Again the sign-∆m2 degeneracy does not survive in the no NSI limit because of no degrees

of freedom of θ± in the limit. In conclusion we have uncovered new degeneracies of the

intrinsic and the sign-∆m2 flipped type which exist as a consequence of the presence of NSI.

8 Matter perturbation theory with NSI

As a first step toward understanding the degeneracy we examine neutrino oscillation with

NSI by matter perturbation theory following the treatment in [42]. It is known [34] that

structure of parameter degeneracy is particularly transparent in the region where the matter

effect can be treated as a perturbation, as explicitly verified in the analyses in [42, 52].

See [60] for further explanation of this point.

For simplicity, we restrict our discussion to νe related appearance measurement in this

section. In concordance to these works we consider νe and ν̄e appearance measurement

with conventional muon neutrino beam and its antiparticles.
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8.1 Structure of the oscillation probability with NSI in matter perturbation

theory

If we restrict ourselves into the first order in a, the matter effect coefficient, the only terms

that survive are the ones up to first order in εeµ or εeτ . The oscillation probability in

νµ → νe channel is given to first order in matter perturbation theory as

P (νµ → νe; εeτ , εeµ) = P (νµ → νe; ε = 0)AKS

+P (νµ → νe; εeτ )NSI + P (νµ → νe; εeµ)NSI, (8.1)

where the leading term is the Arafune-Koike-Sato (AKS) formula without NSI [18]17

P (νµ → νe; ε = 0)AKS = sin2 2θ13s
2
23 sin2 ∆31 + c2

23 sin2 2θ12

(

∆m2
21

∆m2
31

)2

∆2
31

+4Jr

(

∆m2
21

∆m2
31

)

∆31

[

cos δ sin 2∆31 − 2 sin δ sin2 ∆31

]

+2 sin2 2θ13s
2
23

(

aL

4E

)[

1

∆31
sin2 ∆31 −

1

2
sin 2∆31

]

. (8.2)

In (8.2), ∆31 ≡ ∆m2

31
L

4E
a ≡ 2

√
2GF NeE as before. Jr (≡ c12s12c

2
13s13c23s23) denotes the

reduced Jarlskog factor.

The first order matter corrections which include the first order NSI effects in ε’s can

be obtained by taking the first order term in a as

P (νµ → νe; εeτ )NSI = 8

(

aL

4E

)

×
[

c23s
2
23s13

{

|εeτ | cos(δ + φeτ )

(

sin2 ∆31

∆31
− 1

2
sin 2∆31

)

+ |εeτ | sin(δ + φeτ ) sin2 ∆31

}

− c12s12c
2
23s23

∆m2
21

∆m2
31

{

|εeτ | cos φeτ

(

∆31 −
1

2
sin 2∆31

)

− |εeτ | sin φeτ sin2 ∆31

}]

, (8.3)

P (νµ → νe; εeµ)NSI = −8

(

aL

4E

)

(8.4)

×
[

s23s13

{

|εeµ| cos(δ+φeµ)

(

s2
23

sin2 ∆31

∆31
− c2

23

2
sin 2∆31

)

+ c2
23|εeµ| sin(δ+φeµ) sin2 ∆31

}

− c12s12c23
∆m2

21

∆m2
31

{

|εeµ| cos φeµ

(

c2
23∆31 +

s2
23

2
sin 2∆31

)

+ s2
23|εeµ| sin φeµ sin2 ∆31

}]

.

The antineutrino probability P (ν̄µ → ν̄e; εeτ , εeµ) can be obtained by making the replace-

ment in (8.1); a → −a, δ → 2π − δ. εαβ → ε∗αβ . Notice that both of the CP violating

leptonic KM phase δ and φαβ due to NSI elements changes sign when we discuss the time

reversal process νµ → νe, as opposed to νe → νµ in the previous sections.

17 We got rid of a higher order ǫ3 term which was kept in our previous references, e.g., [34, 42, 52].
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For the oscillation probabilities in the νµ − ντ sector we only deal with the one in νµ

disappearance channel (which may be easiest to measure) to first order in ǫ:

P (νµ → νµ; 1st order in ǫ) (8.5)

= 1 − 4c2
23s

2
23 sin2 ∆31 + 4c2

12c
2
23s

2
23

(

∆m2
21

∆m2
31

)

∆31 sin 2∆31

+2c2
23s

2
23

[

(c2
23 − s2

23)(εµµ − εττ ) − 4c23s23Re(εµτ )

]

aL

2E
sin 2∆31

−8c23s23(c
2
23 − s2

23)

[

c23s23(εµµ − εττ ) + (c2
23 − s2

23)Re(εµτ )

]

a

∆m2
31

sin2 ∆31.

Notice that (8.5) is already in the form of first-order formula in matter perturbation theory.

8.2 Sign-∆m2 and θ23 octant degeneracies prevail in the presence of NSI

In this subsection, we discuss the fate of the sign-∆m2 and the θ23 octant degeneracies in

the presence of NSI. In the conventional cases without NSI, they are known as notorious

ones among the three types of degeneracies because they are hard to resolve and the former

can confuse CP violation with CP conservation. The sign-∆m2 degeneracy was uncovered

in systems without NSI by noticing that the oscillation probability P (νµ → νe) in vacuum is

invariant under the transformation ∆m2
31 → −∆m2

31, δ → π− δ without changing θ13 [34].

It maps a positive ∆m2
31 solution to the negative one, and vice versa. The presence of

the symmetry as well as the fact that it is broken by the first order matter terms can be

seen in (8.2).

Now, we observe that the sign-∆m2 degeneracy prevails in the presence of NSI. That is,

the NSI induced terms in the probability (8.3) and (8.4), though they are “matter terms”,

are invariant under the extended transformation

∆m2
31 → −∆m2

31,

δ → π − δ,

φeα → 2π − φeα. (8.6)

while keeping θ13 and |εeα| fixed, where α = µ, τ .18 The symmetry is broken only by the

matter term in (8.2) which is independent of NSI; The symmetry is broken by the matter

effect which has exactly the same magnitude in systems with and without NSI. Therefore,

to first order in matter perturbation theory, the sign-∆m2 degeneracy exists in systems

with NSI to the same extent as it does in the system without NSI. Given the robustness

of the sign-∆m2 degeneracy in the conventional case we suspect that the degeneracy in

systems with NSI has the similar robustness.

Similarly, one can easily show that the θ23 octant degeneracy survives the presence of

NSI. It can be readily observed that P (νµ → νµ; 1st order in ǫ) in (8.5) is invariant under

18 Under the transformation (8.6), the trigonometric factors in (8.4) and (8.3) transform as follows:

cos(δ +φeα) → − cos(δ +φeα), sin(δ +φeα) → + sin(δ +φeα), cos φeα → + cos φeα, and sin φeα → − sin φeα.
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the transformation

c23 → s23,

s23 → c23,

(εµµ − εττ ) → −(εµµ − εττ ). (8.7)

It means that the θ23 octant degeneracy prevails in the presence of NSI, and actually in an

extended form which involves NSI parameter εµµ−εττ . Since this NSI parameter decouples

from P (νµ → νe) to second-order in ǫ, the presence of the θ23 octant degeneracy remains

intact when the NSI is included though values of the degenerate solutions themselves are

affected by the presence of εeα.

It is interesting to note that both of the two degeneracies discussed in this subsection

have common features. Their presence can be discussed based on (approximate) invariance

under some discrete transformations, and with NSI the transformations are extended to

the ones which involve NSI parameters. Most probably, our treatment here is the first one

to signal the existence of the degenerate solutions which involves both the SI (θ13 and δ)

and the NSI parameters.

8.3 Decoupling between the degeneracies in the presence of NSI

In [42] the property called “decoupling between degeneracies” are shown to exist for experi-

mental settings with baseline shorter than ∼ 1000 km which may allow treatment based on

matter perturbation theory. See also [39] and [61] for preliminary discussions. The prop-

erty of decoupling between degeneracies A and B guarantees that when one tries to resolve

the degeneracy A one can forget about the presence of the degeneracy B, and vice versa.

Existence of NSI terms, in general, influences the discussion of decoupling. It is the purpose

of this and the next subsections to fully discuss the fate of the decoupling in the presence

of NSI. Since it is one of the most significant characteristic features of the degeneracies in

matter perturbative regime, we believe it worth to present a complete treatment.

8.3.1 Definition of decoupling between degeneracies

To define the concept of decoupling between degeneracies A and B, we introduce, follow-

ing [42], the probability difference

∆P ab(να → νβ) ≡ P
(

να → νβ; (∆m2
31)

(a), θ
(a)
23 , θ

(a)
13 , δ(a), ε

(a)
αβ

)

−P
(

να → νβ; (∆m2
31)

(b), θ
(b)
23 , θ

(b)
13 , δ(b), ε

(b)
αβ

)

, (8.8)

where the superscripts a and b label the degenerate solutions. Suppose that we are dis-

cussing the degeneracy A. The decoupling between the degeneracies A and B holds if ∆P ab

defined in (8.8) for the degeneracy A is invariant under the replacement of the mixing

parameters corresponding to the degeneracy B, and vice versa.
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8.3.2 Matter-perturbative treatment of the degenerate solutions

We follow [42] to define the degenerate solutions in a perturbative manner.19 Throughout

the discussion in this section we assume that deviation of θ23 from the maximal angle π/4

is small. A disappearance measurement, νµ → νµ, determines s2
23 to first order in s2

13 as

(s2
23)

(1) = (s2
23)

(0)(1 + s2
13), where (s2

23)
(0) is the solution obtained by ignoring s2

13. It is

given by (s2
23)

(0) = 1
2

[

1 ±
√

1 − sin2 2θ23

]

. In leading order the relationship between the

first and the second octant solutions of θ23 is given by s1st
23 = c2nd

23 .

A νe appearance measurement determines the combination s2
23 sin2 2θ13. The first and

the second octant solutions of θ23 are also related to leading order by s1st
23 s1st

13 = s2nd
23 s2nd

13 .

In an environment where the vacuum oscillation approximation applies the solutions cor-

responding to the intrinsic degeneracy are given in appendix D as

θ
(2)
13 =

√

(θ
(1)
13 )2 + 2

(

Yc

X

)

θ
(1)
13 cos δ1 +

(

Yc

X

)2

sin δ2 =
θ
(1)
13

θ
(2)
13

sin δ1

cos δ2 = ∓ 1

θ
(2)
13

(

θ
(1)
13 cos δ1 +

Yc

X

)

(8.9)

where

Yc

X
≡ sin 2θ12 cot θ23∆21 cot ∆31. (8.10)

and the superscripts (1) and (2) label the solutions due to the intrinsic degeneracy. The

sign ∓ for cos δ2 are for Yc = ±|Yc|, and θ
(2)
13 in the solution of δ is meant to be the θ

(2)
13

solution given in the first line in (8.9).

As we saw in the previous section, an extended form of the sign-∆m2 degeneracy is

given under the same approximation (mod. 2π) as

θ norm
13 =θ inv

13 , (∆m2
31)

norm = − (∆m2
31)

inv, δ norm =π − δ inv, (φαβ)norm = − (φαβ) inv,

(8.11)

where the superscripts “norm” and “inv” label the solutions with the positive and the

negative sign of ∆m2
31, and φαβ denotes the phase of εαβ . The validity of these approximate

relationships in the actual experimental setup in the T2K II measurement is explicitly

verified in [42, 52]. It should be noticed that even if sizable matter effect is present the

relation (8.11) holds in a good approximation if the energy is tuned to the one corresponding

to the vacuum oscillation maximum, or more precisely, the shrunk ellipse limit [62].

19 More precise meaning of the term “perturbative” is as follows: Since the disappearance probability

by which θ23 is determined is of order unity we disregard quantities of order ǫ or higher. They include the

matter effect, θ13, and NSI. Similarly, νe appearance probability is of order ǫ2 the relationship between the

two degenerate solution inevitably contains a small quantity, which is θ13 in this case. But, all the quantities

of higher order are neglected. If the near-far two detectors are involved, like in the case of T2KK [42, 52], the

degenerate solutions are essentially defined by the near detector. In this case, the second detector is meant

to give raise to perturbation effect to lift the degeneracy. For more concrete example of this feature, see [42].
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8.4 Decoupling between the sign-∆m2 and the θ23 octant degeneracies

Let us start by treating the sign-∆m2 degeneracy. For this purpose, we calculate

∆P norm inv(νµ → νe) as defined in (8.8). Thanks to the extended symmetry (8.6) obeyed

by the appearance probability, it is given by the same result obtained without NSI in [42]:

∆P norm inv(νµ → νe) = (8.12)

sin2 2θ norm
13 (s norm

23 )2
(

aL

E

)[

1

(∆31)norm
sin2(∆31)

norm − 1

2
sin 2(∆31)

norm

]

where the superscripts “norm” and “inv” can be exchanged if one want to start from

the inverted hierarchy. Therefore, breaking the sign-∆m2 degeneracy requires the matter

effect but not more than that required in resolving it in systems without NSI; NSI does

not contribute resolution of the sign-∆m2 degeneracy but it does not add more difficulties.

By following the same discussion as in [42], we observe that ∆P norm inv is invariant

under the transformation θ 1st
23 ↔ θ 2nd

23 and θ 1st
13 ↔ θ 2nd

13 , because ∆P norm inv depends upon

θ13 and θ23 only through the combination sin2 2θ13s
2
23 within our approximation. Therefore,

resolution of the sign-∆m2
31 can be done in the presence of the θ23 octant degeneracy.

What is the influence of the νµ disappearance channel in the discussion of decoupling?

Using the first-order formula in (8.5), ∆P norm inv(νµ → νµ) can be computed as

∆P norm inv(νµ → νµ) = 8c2
12c

2
23s

2
23

(

∆m2
21L

4E

)

sin
∆m2

31L

2E

+ 4c2
23s

2
23

[

(c2
23 − s2

23)(εµµ − εττ ) − 4c23s23Re(εµτ )

]

aL

2E
sin

∆m2
31L

2E
. (8.13)

It is manifestly invariant under that the transformation in (8.7), and hence the sign-∆m2
31

degeneracy decouples from the θ23 octant degeneracy. Presence of the ∆P norm inv(νµ → νµ)

in first order in ǫ indicates that the νµ disappearance channel would play a role in lifting

the sign-∆m2
31 degeneracy if the measurement is done off the vacuum oscillation maximum.

Now, we discuss the inverse problem, namely, whether the θ23 octant degeneracy can

be resolved in the presence of the sign-∆m2
31 degeneracy. By noting that J 1st

r − J 2nd
r =

cos 2θ 1st
23 J 1st

r in leading order in cos 2θ23, the difference between probabilities with the first

and the second octant solutions can be given by

∆P 1st 2nd(νµ→νe) = cos 2θ 1st
23 ∆21

[

sin2 2θ12∆21+4J 1st
r

(

cos δ sin 2∆31 − 2 sin δ sin2 ∆31

)]

+∆P 1st 2nd(νµ → νe; εeτ )NSI + ∆P 1st 2nd(νµ → νe; εeµ)NSI, (8.14)

where

∆P 1st 2nd(νµ → νe; εeτ )NSI = = −2
√

2c12s12 cos 2θ 1st
23 sin 2θ 1st

23

(

aL

4E

)(

∆m2
21

∆m2
31

)

(8.15)

×
[

|εeτ | cos φeτ

(

∆31−
1

2
sin 2∆31

)

− |εeτ | sin φeτ sin2 ∆31

]

,
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∆P 1st 2nd(νµ → νe; εeµ)NSI = 8 cos 2θ 1st
23

(

aL

4E

)

(8.16)

×
[

s 1st
23 s13

{

|εeµ| cos(δ + φeµ)

(

sin2 ∆31

∆31
+

1

2
sin 2∆31

)

− |εeµ| sin(δ + φeµ) sin2 ∆31

}

+
c12s12

2
√

2

(

∆m2
21

∆m2
31

){

|εeµ| cosφeµ

(

3∆31−
1

2
sin 2θ 1st

23 sin 2∆31

)

− |εeµ| sin φeµ sin 2θ 1st
23 sin2 ∆31

}]

.

The first term of ∆P 1st 2nd in (8.14), being composed only of the vacuum oscillation

terms, is obviously invariant under the replacement normal ↔ inverted solutions. The

remarkable feature of (8.15) and (8.16) is that they are also invariant under the replacement

relation between different hierarchy solutions given in (8.6) which is extended to include NSI

phases. The disappearance channel does not play a role in the present discussion under

the approximation taken in deriving (8.5), because then ∆P 1st 2nd(νµ → νµ) vanishes.

Therefore, even in the presence of NSI, the resolution of the θ23 octant degeneracy can

be carried out without worrying about the presence of the sign-∆m2
31 degeneracy. The

sign-∆m2 and the θ23 octant degeneracies decouple with each other even in the presence

of NSI in matter perturbative regime.

8.5 Non-decoupling of intrinsic degeneracy

Now we discuss the intrinsic degeneracy for which the situation is somewhat different. First

of all, this is the degeneracy which is somewhat different in nature. Unlike the case of the

sign-∆m2
31 degeneracy, this degeneracy is known to be fragile to the spectrum analysis;

In many cases it can be resolved by including informations of energy dependence in the

reconstructed events. An example for this is the T2KK setting which receives an intense

neutrino beam from J-PARC [42, 52]. It means that in this case there is no intrinsic

degeneracy from the beginning. Nonetheless, anticipating possible circumstances in which

spectrum informations are not available, and for completeness, we discuss below if resolving

the intrinsic degeneracy decouple to lifting the other two degeneracies. We disregard the

νµ disappearance channel in this subsection because it does not appear to play a major

role in resolving the intrinsic degeneracy. The discussions in this subsection are also meant

to partly correct and append the ones given in section III in [42].

8.5.1 Non-decoupling of intrinsic degeneracy without NSI

Let us first discuss the problem of decoupling with intrinsic degeneracy without NSI. In

our perturbative approach ∆P 12(νµ → νe) arises only from the first order matter term

in (8.2) because the degenerate solutions in vacuum, by definition, gives the same vacuum

oscillation probabilities. It reads

∆P 12(νµ → νe) = −4

(

aL

4E

)

∆θ2

(

1

∆31
sin2 ∆31 −

1

2
sin 2∆31

)

. (8.17)

where

∆θ2 ≡ (θ
(1)
13 )2 − (θ

(2)
13 )2 (8.18)

= − sin 2θ12 cot θ23∆21 cot ∆31

(

2θ
(1)
13 cos δ(1) + sin 2θ12 cot θ23∆21 cot ∆31

)
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Based on the result of ∆P 12 in (8.17) we discuss possible decoupling of the sign-∆m2 and

the octant θ23 degeneracies from the intrinsic one.

We start from the sign-∆m2 degeneracy. It can be readily seen that ∆P 12 is odd under

interchange of the normal and the inverted hierarchy solutions as dictated in (8.11). It

means that ∆P 12(normal)−∆P 12(inverted) = 2∆P 12 . Clearly, the sign-∆m2 degeneracy

do not decouple from the intrinsic one.

Now we turn to the octant θ23 degeneracy. From (8.17), ∆P 12(1st)−∆P 12(2nd) reads

∆P 12(1st) − ∆P 12(2nd) = 8

(

aL

4E

)

sin 2θ12∆21 cot ∆31

(

1

∆31
sin2 ∆31 −

1

2
sin 2∆31

)

× cos 2θ23

[

θ
(1)
13 cos δ(1) 1 + c23s23

c2
23s23(c23 + s23)

+
2

sin2 2θ23
sin 2θ12∆21 cot ∆31

]

(8.19)

where θ13 and s23 etc. in (8.19) are meant to be the ones in the first octant. It is small

in the sense that it is proportional to cos 2θ23 which vanishes in the limit of maximal θ23.

But, this is the factor of kinematical origin which inevitably exists because the measure

for breaking of the octant degeneracy has to vanish at θ23 = π/4. Therefore, we conclude

that there is no dynamical decoupling of the θ23 octant degeneracy from the intrinsic one.

Now, we discuss the inverse problem, namely, whether the sign-∆m2 and the θ23 octant

degeneracies can be resolved independently of the intrinsic degeneracy. The measure for

resolving the sign-∆m2 degeneracy is given in (8.12)

∆P norm inv(1)−∆P norm inv(2) = 4∆θ2s2
23

(

aL

E

)[

1

∆31
sin2 ∆31 −

1

2
sin 2∆31

]
∣

∣

∣

∣

(1)

norm

(8.20)

where all the quantities in (8.20) is to be evaluated by using the normal hierarchy and

intrinsic first solution. Clearly, the intrinsic degeneracy does not decouple from the sign-

∆m2 one.

How about the θ23 octant degeneracy? The appropriate measure for the question is

given by

∆P 1st 2nd(1) − ∆P 1st 2nd(2) = cos 2θ 1st
23 ∆21 (8.21)

× 1

θ
(2)
13

[

{

4J 1st
r

(

θ
(1)
13 + θ

(2)
13

)

cos δ(1) +
Yc

X

}

sin 2∆31 − 2
sin δ(1)

θ
(1)
13 + θ

(2)
13

∆θ2 sin2 ∆31

]

where θ
(2)
13 implies to insert the expression in (8.9). Again there is no sign of the decoupling.

Nonetheless, there are some cases in which the decoupling with the intrinsic degeneracy

still holds in a good approximation. For example, ∆P 12(1st) − ∆P 12(2nd) in (8.19) and

∆P norm inv(1)−∆P norm inv in (8.20) may be small numerically. It is the case at relatively

short baseline L <∼ 1000 km where it is further suppressed by aL
4E

. The ∆P differences

between the two θ23 octant solutions are always suppressed by cos 2θ23, and hence they

may be small at θ23 very close to the maximal.

It is significant to observe that at the vacuum oscillation maxima, ∆31 = (2n + 1)π
2 ,

the decoupling is realized in all pairs of degeneracies. Therefore, if the experimental set

up is near the vacuum oscillation maxima the decoupling with the intrinsic degeneracy
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perfectly holds. The identical two detector setting in T2KK [42, 52], whose intermediate

(far) detector is near the first (second) oscillation maximum provides a good example for

such “accidental decoupling”.

8.5.2 Decoupling and non-decoupling of intrinsic degeneracy with NSI

We concisely describe what happens in the decoupling between the intrinsic and the other

two degeneracies when NSI is introduced. We explicitly discuss below the case with εeτ

because the equations are slightly simpler, but we have verified that the same conclusion

holds for the case with εeµ, and hence in the full system.

εeτ type NSI gives rise to contribution to the difference of the probabilities with the

first and the second solutions of intrinsic degeneracy of the following form

∆P 12(νµ → νe; εeτ ) = 8

(

aL

4E

)

|εeτ |c23s
2
23 (8.22)

×
(

2θ
(1)
13 cos δ(1) +

Yc

X

)[

cos φeτ

(

sin2 ∆31

∆31
− 1

2
sin 2∆31

)

+ sin φeτ sin2 ∆31

]

,

where use has been made of the relation (D.7). Notice that the terms proportional to the

solar ∆m2
21 do not contribute, and sin δ terms cancel out owing to the relation (D.6).

We observe that ∆P 12(εeτ ) are invariant under interchange between the normal and

the inverted hierarchies, (8.11). Therefore, NSI induced oscillation probability, by itself,

fulfills the decoupling condition with the sign-∆m2 degeneracy.

The situation is different in relationship with the θ23 octant degeneracy. With εeτ one

can derive the similar expression as (8.19):

∆P 12(εeτ ; 1st) − ∆P 12(εeτ ; 2nd) = 4
√

2 cos 2θ23

(

aL

4E

)

|εeτ | sin 2θ12∆21 cot ∆31

×
[

cos φeτ

(

sin2 ∆31

∆31
− 1

2
sin 2∆31

)

+ sinφeτ sin2 ∆31

]

. (8.23)

Though the intrinsic degeneracy does not decouple with the θ23 octant degeneracy, the

suppression factor cos 2θ23

(

aL
4E

)

|εeτ | may be very small if baseline is relatively short and

θ23 is near maximal, assuming the likely possibility that |εeτ | is small. Again, the decoupling

holds at the vacuum oscillation maxima.

General conclusion in the last two subsections is that although the decoupling between

the sign-∆m2
31 and the θ23 octant degeneracies holds, there is no decoupling between the

intrinsic degeneracy and the other two types of degeneracies. The conclusion applies to the

cases with and without NSI.

9 Concluding remarks

In this paper, we have discussed various aspects of neutrino oscillation with NSI, the ex-

actly hold properties as well as the properties best illuminated by a perturbative method.

The former category includes the relation between the S matrix elements and the proba-

bilities that arises due to an invariance of the Hamiltonian under the transformation (4.13)

which involves θ23 and the NSI elements εαβ (α, β = e, µ, τ). It allows us to connect the
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probabilities of various flavor conversion channels, which is powerful enough to strongly

constrain the way how various NSI elements εαβ enter into the oscillation probabilities.

This category also includes the phase reduction theorem which guarantees reduction of

number of CP violating phases when the solar ∆m2
21 is switched off.

By taking the following three quantities,
∆m2

21

∆m2

31

, s13, and the NSI elements εαβ , as

small expansion parameters (which are collectively denoted as ǫ) we have formulated a

perturbative framework which we have dubbed as the “ǫ perturbation theory”. Within

this framework we have calculated the S matrix elements to order ǫ2 and derived the NSI

second-order formula of the oscillation probability in all channels. It allows us to estimate

size of the contribution of the particular NSI element εαβ (α, β = e, µ, τ) to the particular

oscillation probability P (νκ → νω) (κ, ω = e, µ, τ), as tabulated in table 1. To complete the

table (and for other reasons) we have also calculated the oscillation probability in the νe

related channels to third order in ǫ, which is given in appendix C. We have given a global

overview of neutrino oscillation with NSI and hope that the table serves as a “handbook”

for hunting NSI effects in neutrino propagation.

Thanks to the NSI second-order formula we have discussed, for the first time, the way

how the SI and the NSI parameters can be determined simultaneously. We found that

measurement of all the relevant NSI and SI parameters is extremely demanding; While all

the NSI elements in νe related sector can in principle be determined together with θ13 and

δ, it requires νe → νµ, νµ → νe, νe → ντ , and their CP conjugate channels if we do it by

the rate only measurement. We have also proven to the accuracy of ǫ2 that, if we restrict

to the rate only analysis, all the NSI elements in νµ − ντ sector cannot be determined even

if we prepare ντ beam.

Clearly, the right strategy is to pursue the appropriate experimental setup which en-

ables us the spectrum analysis to determine several coefficients at the same time. The capa-

bility of spectrum analysis with good resolution would be a mandatory requirement for fu-

ture facilities which aim at searching for effects of NSI at least as one of their objectives. To

our knowledge, the leading candidate for such setup is the two-detector setup at L ≃ 3000

km and L ≃ 7000 km in neutrino factory with use of the golden channel [20], which are

proven to be powerful in resolving the conventional parameter degeneracy [33, 63]. In a

previous paper, it was shown that the setting is also powerful in resolving the θ13-NSI (and

probably the two-phase) confusion [31]. It must be stressed, however, that we still do not

know if the setting is sufficiently powerful in determining all the SI and the NSI parameters.

We have observed that the phenomenon of parameter degeneracy prevails in the system

with NSI. Notably, it exists in an extended form of involving not only the SI but also the

NSI parameters. In a concrete setting of six probabilities at monochromatic beam, we have

uncovered a new type of degeneracy, the solar-atmospheric variable exchange degeneracy.

To have a first grasp of the nature of the parameter degeneracy of more conventional type,

we have discussed the matter perturbation theory of neutrino oscillation with NSI. We

have found that the sign-∆m2
31 and the θ23 octant degeneracies are robust, and the analysis

indicates the way how the NSI parameters are involved into the new form of degeneracy.

The decoupling between degeneracies, a salient feature in the matter perturbative regime,

is also revisited in an extended setting with NSI.
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In our investigation we have also noticed a new feature of neutrino oscillation in matter

in the standard three-flavor oscillation without NSI, that is, the matter hesitation. It states

that the matter effect comes in into the oscillation probability only at the second order in

ǫ. The property allows us to understand why it is so difficult to detect the matter effect

in various long-baseline experiments, and explains why εee is absent from the NSI second

order formula. Notice that the property does not hold in the νµ − ντ system with NSI.

Of course, a number of cautions have to be made to correctly interpret our results;

Many of our statements are based on the NSI second order formula which is reliable only

if the assumptions made in formulating our perturbative treatment are correct. We do not

deal with effects of NSI in production and detection of neutrinos. The program of complete

determination of the NSI parameters mentioned above must be cooperated with search for

NSI in production and detection processes.

In this paper we confined the case of relatively small θ13 in accordance to our per-

turbative hypothesis in (5.1). What happens if θ13 is large enough so that not only θ13

but also δ are determined by the next generation reactor/accelerator [64–66] and upgraded

superbeam [67] experiments prior NSI search? Then, one might argue that the discussion

of parameter determination would become much less complicated in this case. We argue

that this is not quite correct. As we have seen in section 6 the NSI and the SI parameters

appear in the oscillation probability in a tightly coupled way. Hence, determination of

the former with size of εα,β ∼ 10−2 requires simultaneous determination of the latter with

accuracy of the similar order. Therefore, prior determination of θ13 and δ, unless extremely

precise ones, would not alter the necessity of simultaneous determination of SI and NSI

parameters. However, we note that knowing the neutrino mass hierarchy would greatly

help by decreasing the ambiguities which arise from the degeneracy.

A S matrix elements for neutrino oscillation with NSI

Using the formalism described in section 5 with the double-tilde basis (6.1) it is straight-

forward to compute the S matrix elements for neutrino oscillations with NSI. Omitting

calculations we just present the results of the S matrix elements: The notations used below

are: ∆ ≡ ∆m2

31

2E
, r∆ ≡ ∆m2

21

∆m2

31

, rA ≡ a
∆m2

31

, and the NSI elements are in the tilde-basis (4.12).

See =
{

1 − i∆L
(

s2
12r∆ + rAε̃ee

)

}

e−irA∆L

+s2
13(irA∆L)e−irA∆L − s2

13

1 + rA

1 − rA

(

e−irA∆L − e−i∆L
)

−2s13Re(ε̃eτeiδ)rA

[

i∆Le−irA∆L +
1

1 − rA

(

e−irA∆L − e−i∆L
)

]

−(s2
12

r∆

rA
+ ε̃ee)

2 (rA∆L)2

2
e−irA∆L

−|c12s12
r∆

rA
+ ε̃eµ|2

{

(irA∆L)e−irA∆L −
(

1 − e−irA∆L
)

}

+|s13e
−iδ + ε̃eτ |2

(

r2
A

1 − rA

) [

i∆Le−irA∆L − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

(A.1)
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Seµ = −c23

(

c12s12
r∆

rA
+ε̃eµ

)

(

1−e−irA∆L
)

−s23

(

s13e
−iδ+rAε̃eτ

) 1

1−rA

(

e−irA∆L−e−i∆L
)

−c23s13ε̃
∗
µτe

−iδ
{

(

1 − e−irA∆L
)

+ rA

(

1 − e−i∆L
)

}

+s23s13e
−iδ(ε̃ee − ε̃ττ )

rA

1 − rA

(

e−irA∆L − e−i∆L
)

+s23s13e
−iδ(i∆L)

{

(s2
12r∆ + ε̃eerA)e−irA∆L − ε̃ττrAe−i∆L

}

+c23

(

c12s12
r∆

rA
+ ε̃eµ

)[

irA∆L

{(

c2
12

r∆

rA
+ ε̃µµ

)

−
(

s2
12

r∆

rA
+ ε̃ee

)

e−irA∆L

}

−
(

(c2
12 − s2

12)
r∆

rA
− ε̃ee + ε̃µµ

)

(

1 − e−irA∆L
)

]

+s23

(

s13e
−iδ + ε̃eτ

)

(

r2
A

1 − rA

)[

i∆L

{(

s2
12

r∆

rA
+ ε̃ee

)

e−irA∆L − ε̃ττe
−i∆L

}

− 1

1 − rA

(

s2
12

r∆

rA
+ ε̃ee − ε̃ττ

)

(

e−irA∆L − e−i∆L
)

]

+

{

c23ε̃
∗
µτ

(

s13e
−iδ + ε̃eτ

)

+ s23ε̃µτ

(

c12s12
r∆

rA
+ ε̃eµ

)}

×rA

[

(1 − e−i∆L) − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

(A.2)

Seτ = s23

(

c12s12
r∆

rA
+ε̃eµ

)

(

1−e−irA∆L
)

− c23

(

s13e
−iδ+rAε̃eτ

) 1

1−rA

(

e−irA∆L− e−i∆L
)

+s23s13ε̃
∗
µτe−iδ

{

(

1 − e−irA∆L
)

+ rA

(

1 − e−i∆L
)

}

+c23s13e
−iδ(ε̃ee − ε̃ττ )

rA

1 − rA

(

e−irA∆L − e−i∆L
)

+c23s13e
−iδ(i∆L)

{

(s2
12r∆ + ε̃eerA)e−irA∆L − ε̃ττ rAe−i∆L

}

+s23

(

c12s12
r∆

rA
+ ε̃eµ

)[

irA∆L

{

−
(

c2
12

r∆

rA
+ ε̃µµ

)

+

(

s2
12

r∆

rA
+ ε̃ee

)

e−irA∆L

}

+

(

(c2
12 − s2

12)
r∆

rA
− ε̃ee + ε̃µµ

)

(

1 − e−irA∆L
)

]

+c23

(

s13e
−iδ + ε̃eτ

)

(

r2
A

1 − rA

)[

i∆L

{(

s2
12

r∆

rA
+ ε̃ee

)

e−irA∆L − ε̃ττe−i∆L

}

− 1

1 − rA

(

s2
12

r∆

rA
+ ε̃ee − ε̃ττ

)

(

e−irA∆L − e−i∆L
)

]

+

{

−s23ε̃
∗
µτ

(

s13e
−iδ + ε̃eτ

)

+ c23ε̃µτ

(

c12s12
r∆

rA
+ ε̃eµ

)}

×rA

[

(1 − e−i∆L) − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

(A.3)

Sµµ = c2
23

{

1 − i(c2
12r∆ + ε̃µµrA)∆L

}

+ s2
23 (1 − iε̃ττ rA∆L) e−i∆L

−2c23s23 Re(ε̃µτ )rA

(

1 − e−i∆L
)

−s2
23s

2
13

[

(irA∆L)e−i∆L − 1 + rA

1 − rA

(

e−irA∆L − e−i∆L
)

]
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+2s2
23s13Re(ε̃eτe

iδ)

[

(irA∆L)e−i∆L +
rA

1 − rA

(

e−irA∆L − e−i∆L
)

]

+2c23s23s13 Re(ε̃eµeiδ)rA

(

1 − e−i∆L
)

+2c23s23s13

{

c12s12 cos δ
r∆

rA
+ Re

(

ε̃eµeiδ
)}

(

1 − e−irA∆L
)

−
[

c2
23(c

2
12

r∆

rA
+ ε̃µµ)2 + s2

23ε̃
2
ττe−i∆L

]

(rA∆L)2

2

+c2
23

[

|c12s12
r∆

rA
+ ε̃eµ|2

{

(irA∆L)−
(

1 − e−irA∆L
)

}

− |ε̃µτ |2r2
A

(

1 − i∆L − e−i∆L
)

]

−s2
23

[

|s13e
−iδ + ε̃eτ |2

(

r2
A

1 − rA

)

{

i∆Le−i∆L − 1

1 − rA

(

e−irA∆L − e−i∆L
)

}

+|ε̃µτ |2r2
A

{

i∆Le−i∆L − (1 − e−i∆L)
}]

+2c23s23Re(ε̃µτ )r2
A

[

i∆L

(

c2
12

r∆

rA
+ ε̃µµ − ε̃ττe

−i∆L

)

−
(

c2
12

r∆

rA
+ ε̃µµ − ε̃ττ

)

(

1 − e−i∆L
)

]

+2c23s23Re

{(

c12s12
r∆

rA
+ ε̃∗eµ

)

(

s13e
−iδ + ε̃eτ

)

}

×rA

[

(1 − e−i∆L) − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

(A.4)

Sττ = s2
23

{

1 − i(c2
12r∆ + ε̃µµrA)∆L

}

+ c2
23 (1 − iε̃ττ rA∆L) e−i∆L

+2c23s23 Re(ε̃µτ )rA

(

1 − e−i∆L
)

−c2
23s

2
13

[

(irA∆L)e−i∆L − 1 + rA

1 − rA

(

e−irA∆L − e−i∆L
)

]

+2c2
23s13Re(ε̃eτeiδ)

[

(irA∆L)e−i∆L +
rA

1 − rA

(

e−irA∆L − e−i∆L
)

]

−2c23s23s13 Re(ε̃eµeiδ)rA

(

1 − e−i∆L
)

−2c23s23s13

{

c12s12 cos δ
r∆

rA
+ Re

(

ε̃eµeiδ
)}

(

1 − e−irA∆L
)

−
[

s2
23(c

2
12

r∆

rA
+ ε̃µµ)2 + c2

23ε̃
2
ττe−i∆L

]

(rA∆L)2

2

+s2
23

[

|c12s12
r∆

rA
+ ε̃eµ|2

{

(irA∆L) −
(

1 − e−irA∆L
)

}

− |ε̃µτ |2r2
A

(

1 − e−i∆L
)

]

−c2
23

[

|s13e
−iδ + ε̃eτ |2

(

r2
A

1 − rA

)

{

i∆Le−i∆L − 1

1 − rA

(

e−irA∆L − e−i∆L
)

}

+|ε̃µτ |2r2
A

{

i∆Le−i∆L − (1 − i∆L − e−i∆L)
}]

−2c23s23Re(ε̃µτ )r2
A

[

i∆L

(

c2
12

r∆

rA
+ ε̃µµ − ε̃ττe

−i∆L

)

−
(

c2
12

r∆

rA
+ ε̃µµ − ε̃ττ

)

(

1 − e−i∆L
)

]
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−2c23s23Re

{(

c12s12
r∆

rA
+ ε̃∗eµ

)

(

s13e
−iδ + ε̃eτ

)

}

×rA

[

(1 − e−i∆L) − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

(A.5)

Sµτ = −c23s23

{

1 − i(c2
12r∆ + ε̃µµrA)∆L

}

+ c23s23 (1 − iε̃ττ rA∆L) e−i∆L

−
{

(c2
23 − s2

23)Re(ε̃µτ ) − i Im(ε̃µτ )
}

rA

(

1 − e−i∆L
)

−c23s23s
2
13

[

(irA∆L)e−i∆L − 1 + rA

1 − rA

(

e−irA∆L − e−i∆L
)

]

+2c23s23s13Re(ε̃eτe
iδ)

[

(irA∆L)e−i∆L +
rA

1 − rA

(

e−irA∆L − e−i∆L
)

]

+s13

{

(c2
23 − s2

23)Re(ε̃eµeiδ) + i Im(ε̃eµeiδ)
}

rA

(

1 − e−i∆L
)

+s13

[

(c2
23−s2

23)Re

{

eiδ

(

c12s12
r∆

rA
+ε̃eµ

)}

− i Im

{

eiδ

(

c12s12
r∆

rA
+ε̃eµ

)}]

(

1−e−irA∆L
)

+r2
A

(

c2
23ε̃µτ − s2

23ε̃
∗
µτ

)

[

i∆L

(

c2
12

r∆

rA
+ ε̃µµ − ε̃ττe

−i∆L

)

−
(

c2
12

r∆

rA
+ ε̃µµ − ε̃ττ

)

(

1 − e−i∆L
)

]

+

[

c2
23

(

c12s12
r∆

rA
+ ε̃∗eµ

)

(

s13e
−iδ + ε̃eτ

)

− s2
23

(

c12s12
r∆

rA
+ ε̃eµ

)

(

s13e
iδ + ε̃∗eτ

)

]

×rA

[

(1 − e−i∆L) − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

+c23s23

[

(

c2
12

r∆

rA
+ ε̃µµ

)2

− ε̃2
ττe

−i∆L

]

(rA∆L)2

2

−c23s23|s13e
−iδ + ε̃eτ |2

(

r2
A

1 − rA

)[

i∆Le−i∆L − 1

1 − rA

(

e−irA∆L − e−i∆L
)

]

−c23s23|c12s12
r∆

rA
+ ε̃eµ|2

{

irA∆L −
(

1 − e−irA∆L
)

}

−c23s23|ε̃µτ |2r2
A

{

i∆L(1 + e−i∆L) − 2
(

1 − e−irA∆L
)

}

(A.6)

The other S matrix elements are given by either the T-conjugate relations

Sµe(δ, φαβ) = Seµ(−δ,−φαβ),

Sτe(δ, φαβ) = Seτ (−δ,−φαβ),

Sτµ(δ, φαβ) = Sµτ (−δ,−φαβ), (A.7)

or by the CP-conjugate relations for antineutrino channels

S̄eµ(δ, φαβ , a) = Seµ(−δ,−φαβ ,−a),

S̄eτ (δ, φαβ , a) = Seτ (−δ,−φαβ ,−a),

S̄µτ (δ, φαβ , a) = Sµτ (−δ,−φαβ ,−a). (A.8)
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B NSI second-order probability formulas

In this appendix we give the explicit expressions of the oscillation probabilities to second

order in ǫ in all channels, except for those which can be readily obtained by the extended

transformation (4.13).

B.1 Oscillation probability in the νe-related sector

We present here the explicit forms of P (νe → νe) and P (νe → νµ) for completeness and

possible convenience of the readers considering importance of the appearance channels.

P (νe → νe) = 1 − 4

∣

∣

∣

∣

c12s12
∆m2

21

a
+ c23εeµ − s23εeτ

∣

∣

∣

∣

2

sin2 aL

4E
(B.1)

−4

∣

∣

∣

∣

s13e
−iδ ∆m2

31

a
+ s23εeµ + c23εeτ

∣

∣

∣

∣

2( a

∆m2
31 − a

)2

sin2 ∆m2
31 − a

4E
L,

P (νe → νµ) = 4c2
23

∣

∣

∣

∣

c12s12
∆m2

21

a
+ c23εeµ − s23εeτ

∣

∣

∣

∣

2

sin2 aL

4E

+4s2
23

∣

∣

∣

∣

s13e
−iδ ∆m2

31

a
+ s23εeµ + c23εeτ

∣

∣

∣

∣

2(
a

∆m2
31 − a

)2

sin2 ∆m2
31 − a

4E
L

+8c23s23 Re

[

(c12s12
∆m2

21

a
+ c23εeµ − s23εeτ )(s13e

iδ ∆m2
31

a
+ s23ε

∗
eµ + c23ε

∗
eτ )

]

× a

∆m2
31 − a

sin
aL

4E
cos

∆m2
31L

4E
sin

∆m2
31 − a

4E
L

+8c23s23 Im

[

(c12s12
∆m2

21

a
+ c23εeµ − s23εeτ )(s13e

iδ ∆m2
31

a
+ s23ε

∗
eµ + c23ε

∗
eτ )

]

× a

∆m2
31 − a

sin
aL

4E
sin

∆m2
31L

4E
sin

∆m2
31 − a

4E
L. (B.2)

P (νe → ντ ) can be obtained from P (νe → νµ) by the transformation (4.13). Or, the simpler

way of remembering the operation is to do transformation c23 → −s23 and s23 → c23 in

P (νe → νµ), but undoing any transformation in the generalized atmospheric and the solar

variables defined in (6.5), the pieces bracketed in the real and imaginary parts in (B.2).

(See also (B.3)).

B.2 Oscillation probability in the νµ − ντ sector

For compact expressions of the oscillation probabilities in the νµ − ντ sector, we define the

simplified notations which involve ε’s in the νµ − ντ sector as well as εee.
20 Together with

the ones already defined in section 6.1, they are as follows:

Θ± ≡ s13
∆m2

31

a
+ (s23εeµ + c23εeτ )e

iδ ≡ |Θ±|eiθ± ,

Ξ ≡
(

c12s12
∆m2

21

a
+ c23εeµ − s23εeτ

)

eiδ ≡ |Ξ|eiξ,

20For readers who want to see the fully explicit expressions of all the oscillation probabilities, we refer

the first arXiv version of this paper [68].
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E ≡ c23s23(εµµ − εττ ) + c2
23εµτ − s2

23ε
∗
µτ ≡ |E|eiφ,

S1 ≡ (c2
23 − s2

23)(εττ − εµµ) + 2c23s23(εµτ + ε∗µτ ) − c2
12

∆m2
21

a
,

S2 ≡ (εµµ − εee) + c2
23(εττ − εµµ) + c23s23(εµτ + ε∗µτ ) − s2

12

∆m2
21

a
,

S3 ≡ (εµµ − εee) + s2
23(εττ − εµµ) − c23s23(εµτ + ε∗µτ ) + (c2

12 − s2
12)

∆m2
21

a
. (B.3)

Notice that S1, S2, and S3 are not independent, S1 = S2 − S3. We also note that Θ±, Ξ,

and E are complex numbers while the others are real.

To present the oscillation probabilities in the νµ −ντ sector, we start by recapitulating

the decomposition formula (6.18) in section 6.2:

P (να → νβ; εeµ, εeτ , εµµ, εµτ , εττ ) = P (να → νβ; 2 flavor in vacuum)

+P (να → νβ; εeµ, εeτ )

+P (να → νβ; εµµ, εµτ , εττ ) (B.4)

where α and β denote one of µ and τ . The first term in (B.4) has a form that it appears

in the two flavor oscillation in vacuum:

P (νµ → νµ; 2 flavor in vacuum) = P (ντ → ντ ; 2 flavor in vacuum)

= 1 − 4c2
23s

2
23 sin2 ∆m2

31L

4E
,

P (νµ → ντ ; 2 flavor in vacuum) = 4c2
23s

2
23 sin2 ∆m2

31L

4E
. (B.5)

We have shown in section 6.2 that the third term in (B.4) in the νµ → νµ, ντ → ντ ,

and νµ → ντ channels are given by the single equation21

P (νµ → νµ; εµµ, εµτ , εττ )

= P (ντ → ντ ; εµµ, εµτ , εττ ) = −P (νµ → ντ ; εµµ, εµτ , εττ )

= 2c2
23s

2
23

(

s2
13

∆m2
31

a
− S1

)(

aL

2E

)

sin
∆m2

31L

2E
− c2

23s
2
23S2

1

(

aL

2E

)2

cos
∆m2

31L

2E

+8c23s23(c
2
23 − s2

23)

[

c12s12s13 cos δ

(

∆m2
21

a

)

− |E| cos φ

](

a

∆m2
31

)

sin2 ∆m2
31L

4E

−4c23s23(c
2
23 − s2

23)S1|E| cos φ

(

a

∆m2
31

)[(

aL

2E

)

sin
∆m2

31L

2E
− 2

(

a

∆m2
31

)

sin2 ∆m2
31L

4E

]

−4c2
23s

2
23|E|2

(

a

∆m2
31

aL

2E

)

sin
∆m2

31L

2E

−4|E|2
[

(c2
23 − s2

23)
2 − 4c2

23s
2
23 cos2 φ

](

a

∆m2
31

)2

sin2 ∆m2
31L

4E
. (B.6)

21 To second order in ǫ the sensitivity to εµµ and εττ is through the form εµµ − εττ , and hence no

sensitivity to the individual ε’s. Generally, the diagonal ε’s appear in a form of difference in the oscillation

probabilities as one can observe in the third-order formula given in appendix C. It must be the case because

the over-all phase is an unobservable.
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The second term in (B.4) is given in νµ → νµ channel as

P (νµ → νµ; εeµ, εeτ ) = −4c2
23|Ξ|2 sin2 aL

4E
− 2c2

23s
2
23|Ξ|2

(

aL

2E

)

sin
∆m2

31L

2E
(B.7)

+ 8c2
23s

2
23|Ξ|2 sin

aL

4E
sin

∆m2
31L

4E
cos

∆m2
31 − a

4E
L

− 4s2
23|Θ±|2

(

a

∆m2
31 − a

)2

sin2 ∆m2
31 − a

4E
L − 2c2

23s
2
23|Θ±|2

(

a

∆m2
31 − a

aL

2E

)

sin
∆m2

31L

2E

+ 8c2
23s

2
23|Θ±|2

(

a

∆m2
31 − a

)2

cos
aL

4E
sin

∆m2
31L

4E
sin

∆m2
31 − a

4E
L

+ 8c23s23|Ξ||Θ±| cos(ξ − θ±)

(

a

∆m2
31 − a

)

×
[

c2
23 sin2 aL

4E
+ s2

23 sin2 ∆m2
31 − a

4E
L − s2

23 sin2 ∆m2
31L

4E
− (c2

23 −s2
23)

a

∆m2
31

sin2 ∆m2
31L

4E

]

.

The subscript ± in this and the following equations denotes the normal and the inverted

mass hierarchies, which corresponds to the positive and negative values of ∆m2
31. Notice

again that P (ντ → ντ ; εeµ, εeτ ) can be obtained from P (νµ → νµ; εeµ, εeτ ) by the extended

transformation (4.13), or by the operation described at the end of the previous subsection.

Finally, the second term in the oscillation probability in the νµ → ντ channel is given by

P (νµ → ντ ; εeµ, εeτ )

= 4c2
23s

2
23|Ξ|2

(

aL

4E

)

sin
∆m2

31L

2E
− 8c2

23s
2
23|Ξ|2 sin

aL

4E
sin

∆m2
31L

4E
cos

∆m2
31 − a

4E
L

+4c2
23s

2
23|Θ±|2

(

a

∆m2
31 − a

) (

aL

4E

)

sin
∆m2

31L

2E

−8c2
23s

2
23|Θ±|2

(

a

∆m2
31 − a

)2

cos
aL

4E
sin

∆m2
31L

4E
sin

∆m2
31 − a

4E
L

+8c23s23(c
2
23 − s2

23)|Ξ||Θ±| cos(ξ − θ±)

(

a

∆m2
31 − a

)(

a

∆m2
31

)

sin2 ∆m2
31L

4E

+8c23s23|Ξ||Θ±|
(

a

∆m2
31 − a

)

sin
aL

4E
sin

∆m2
31L

4E

×
[

s2
23 cos

(

ξ − θ± − ∆m2
31 − a

4E
L

)

− c2
23 cos

(

ξ − θ± +
∆m2

31 − a

4E
L

)]

. (B.8)

C NSI third-order formula

We present here the third-order formula for the oscillation probability with NSI. Though

utility of such lengthy formula may be subject to doubt we can offer at least three arguments

to justify the presentation of the formula in this appendix. Firstly, the third-order formula

is needed to complete table 1. Secondly, by turning off all the NSI elements one can obtain

the SI third-order formula for the oscillation probabilities with SI only, which is valid to
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order ǫ3. To our knowledge, such formula has never been derived in the literature. Utility

of the SI third-order formula for theoretical analysis may be obvious if the sensitivity to

the oscillation probability reaches to the level of ∼ 10−5, which is smaller than terms of

order ǫ2. In fact, it appears to be the case in some of the future facilities according to the

analysis in [69]. Thirdly, once the sensitivity to the oscillation probability comes down to

∼ 10−5, a complete treatment of neutrino oscillation probability must include NSI elements

up to the same order as θ13 and ∆m2
21/∆m2

31, as far as our ansatz (5.1) in formulating the

ǫ perturbation theory is correct. Thus, we believe that the NSI third-order formula has a

good chance to be useful.

In presenting the third-order probability formula we restrict ourselves to the νe related
channel, and only present P (νe → νµ) here because from which P (νe → ντ ) can be obtained
by the extended transformation (4.13). Then, P (νe → νe) can be readily calculated by using
the unitarity relation. The NSI third-order formula for P (νe → νµ) reads

P (νe → νµ) = 4c2
23|Ξ|2 sin2 aL

4E
+ 4s2

23|Θ±|2
(

a

∆m2
31 − a

)2

sin2 ∆m2
31 − a

4E
L (C.1)

+8c23s23|Ξ||Θ±| cos

(

ξ − θ± − ∆m2
31L

4E

) (

a

∆m2
31 − a

)

sin
aL

4E
sin

∆m2
31 − a

4E
L

−8c23s23s
2
12s13|Ξ| cos

(

ξ − ∆m2
31L

4E

) (

∆m2
21

a

) (

a

∆m2
31 − a

)

sin
aL

4E
sin

∆m2
31 − a

4E
L

−8s2
23s

2
12s13|Θ±| cos θ±

(

∆m2
21

a

) (

a

∆m2
31 − a

)2

sin2 ∆m2
31 − a

4E
L

+4s2
23|Θ±|2S2

(

a

∆m2
31 − a

)2 [(

aL

4E

)

sin
∆m2

31 − a

2E
L − 2

(

a

∆m2
31 − a

)

sin2 ∆m2
31 − a

4E
L

]

+4c2
23|Ξ|2S3

[

2 sin2 aL

4E
−

(

aL

4E

)

sin
aL

2E

]

+8c23s23|Ξ|2|E| cos

(

φ +
∆m2

31 − a

4E
L

)(

a2

∆m2
31(∆m2

31 − a)

)

sin
aL

4E
sin

∆m2
31L

4E

−8c23s23|Ξ|2|E| cosφ

(

a

∆m2
31 − a

)

sin2 aL

4E

+8c23s23|Θ±|2|E| cosφ

(

a

∆m2
31 − a

)2

sin2 ∆m2
31 − a

4E
L

−8c23s23|Θ±|2|E| cos

(

φ +
aL

4E

) (

a2

∆m2
31(∆m2

31 − a)

)

sin
∆m2

31L

4E
sin

∆m2
31 − a

4E
L

−4c23s23|Ξ||Θ±|
(

a

∆m2
31 − a

)(

aL

4E

)

×
[

S1 sin

(

ξ−θ± − ∆m2
31L

2E

)

+S3 sin

(

ξ − θ± − aL

2E

)

−S2 sin

(

ξ− θ± − ∆m2
31 − a

2E
L

)]

−8c23s23|Ξ||Θ±| cos

(

ξ − θ± − ∆m2
31L

4E

)

×
[(

a

∆m2
31 − a

)

S2 − S3

] (

a

∆m2
31 − a

)

sin
aL

4E
sin

∆m2
31 − a

4E
L

−8s2
23|Ξ||Θ±||E| cos

(

ξ + φ − θ± − aL

4E

) (

a2

∆m2
31(∆m2

31 − a)

)

sin
∆m2

31L

4E
sin

∆m2
31 − a

4E
L
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+8c2
23|Ξ||Θ±||E| cos

(

ξ + φ − θ± − ∆m2
31 − a

4E
L

) (

a2

∆m2
31(∆m2

31 − a)

)

sin
aL

4E
sin

∆m2
31L

4E

+8|Ξ||Θ±||E|cos (ξ+φ−θ±)

(

a

∆m2
31−a

)[

s2
23

(

a

∆m2
31−a

)

sin2 ∆m2
31−a

4E
L− c2

23 sin2 aL

4E

]

.

D Intrinsic degeneracy in vacuum

We re-examine the problem of intrinsic degeneracy in vacuum. For simplicity, we focus

on the channel νµ → νe. We use a simplified notation s13 ≡ s below. The neutrino and

anti-neutrino oscillation probabilities in vacuum are given by

P (νµ → νe) = Xs2 + (Yc cos δ − Ys sin δ) s + P⊙

P (ν̄µ → ν̄e) = Xs2 + (Yc cos δ + Ys sin δ) s + P⊙ (D.1)

where X, Y ’s, etc. are defined with simplified symbol ∆ji ≡
∆m2

jiL

4E
as

X ≡ 4s2
23 sin2 ∆31,

Yc ≡ sin 2θ12 sin 2θ23∆21 sin 2∆31,

Ys ≡ 2 sin 2θ12 sin 2θ23∆21 sin2 ∆31,

P⊙ ≡ sin2 2θ12c
2
23∆

2
21. (D.2)

Let us denote two set of intrinsic degenerate solutions as (s1, δ1) and (s2, δ2). They

satisfy

P − P⊙ = Xs2
1 + (Yc cos δ1 − Ys sin δ1) s1

P − P⊙ = Xs2
2 + (Yc cos δ2 − Ys sin δ2) s2 (D.3)

and

P̄ − P⊙ = Xs2
1 + (Yc cos δ1 + Ys sin δ1) s1

P̄ − P⊙ = Xs2
2 + (Yc cos δ2 + Ys sin δ2) s2 (D.4)

By subtracting two equations in (D.3) and (D.4) respectively, we obtain

X(s2
1 − s2

2) + Yc(s1 cos δ1 − s2 cos δ2) − Ys(s1 sin δ1 − s2 sin δ2) = 0,

X(s2
1 − s2

2) + Yc(s1 cos δ1 − s2 cos δ2) + Ys(s1 sin δ1 − s2 sin δ2) = 0. (D.5)

They further simplifies to

s1 sin δ1 − s2 sin δ2 = 0, (D.6)

X(s2
1 − s2

2) + Yc(s1 cos δ1 − s2 cos δ2) = 0. (D.7)

Equation (D.6) can be solved as

s2 cos δ2 = ±
√

s2
2 − s2

1 sin2 δ1 (D.8)

– 40 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
4

which can be inserted to (D.7) to yield the (formally quartic but actually) quadratic equa-

tion for s2. Now, the issue here is to choose the correct sign in (D.8). One can show that

by using (D.7) if Yc > 0 (Yc < 0), minus (plus) sign has to be chosen.

These equations can be easily solved for (s2, δ2) for given values of (s1, δ1) as inputs:

s2 =

√

s2
1 + 2

(

Yc

X

)

s1 cos δ1 +

(

Yc

X

)2

sin δ2 =
s1

s2
sin δ1

cos δ2 = ∓ 1

s2

(

s1 cos δ1 +
Yc

X

)

(D.9)

where the sign ∓ for cos δ2 are for Yc = ±|Yc|, and s2 in the solution of δ is meant to be

the s2 solution given in the first line in (D.9). By using

Yc

X
= sin 2θ12 cot θ23∆21 cot ∆31 (D.10)

s2 can be written as

s2 =

√

s2
1 + 2 sin 2θ12 cot θ23∆21 cot ∆31s1 cos δ1 + (sin 2θ12 cot θ23∆21 cot ∆31)

2

(D.11)

Similarly, cos δ is given as

cos δ2 = ∓ 1

s2
(s1 cos δ1 + sin 2θ12 cot θ23∆21 cot ∆31) (D.12)

By further expanding (D.9) by Yc

X
, assuming it small, the Burguet-Castell et al. solu-

tion [33, 57] is reproduced;

s2 ≃ s1 +
Yc

X
cos δ1 (D.13)
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